

Zend Technologies, Inc.
2006-2008

ZEND FRAMEWORK
CERTIFICATION

STUDY GUIDE

The Zend Framework Certification is designed to measure your expertise in both
understanding the concepts, rules, and code behind the framework, and equally
important, your ability to take this knowledge and apply it to your development
projects.

The certification was designed by the Zend Framework Education Advisory Board, an
elite, global set of web application development experts (across a variety of companies)
who established the criteria for knowledge and job task competencies and developed
the related questions that assess Zend Framework expertise.

The Process

In order to become certified in the use of Zend Framework (ZF), you will need to
successfully pass an examination. The exam is administered world-wide by Pearson
Vue. You will be required to take the exam at one of their Vue Testing Centers, available
in over 3500 locations around the world. The exam is taken in an isolated room, using a
specially configured computer, and is “closed-book”, so you will not be able to consult
any reference material or use the Internet while taking it.

The Exam

The ZF Certification exam itself is very similar to most other IT exams offered, including
the exam for Zend PHP 5 Certification. The exam is composed of approximately 75
randomly-generated questions, which must be answered in 90 minutes. Each question
can be formulated in one of three ways:

 As a multiple-choice question with only one right answer

 As a multiple-choice question with multiple correct answers

 As a free-form question for which the answer must be typed in

The 14 areas of expertise created by the ZF Certification Education Advisory Board are:

Authentication and Authorization Internationalization

Coding Standards Mail

Databases Model-View-Controller (MVC)

Diagnosis and Maintenance Performance

Filtering and Validation Search

Forms Security

Infrastructure Web Services

ZEND FRAMEWORK CERTIFICATION :

The Study Guide

This Study Guide provides guidance as to the topics to be covered, and an indication of
the depth of knowledge required to pass the exam. It does not teach Zend Framework.
This guide assumes that anyone about to undertake the Certification exam is very
familiar with the Framework and has extensive experience in utilizing its structure and
components in application development.

The Guide therefore presents a concise treatment of the 14 required knowledge areas
for certification, with reminders and hints on some essential aspects of the
components. It is by no means a complete discussion of the entire framework, nor a
complete presentation of everything you might find on the exam. It is a guide to the
types of facts and coding practices that are considered essential for passing the exam.

Guide Structure:

Each of the 14 topic areas tested by the ZF Certification exam will have three associated
sections within the Study Guide.

First is the Topic “Snapshot” view, which provides a visual framework of the sub-topics
considered required knowledge for each major topic, and highlighted knowledge areas
within each. They serve as guides, or hints… do you understand how these elements
relate to the topic? Could you answer basic to advanced questions on these?

Next follows a more in-depth discussion of these various target areas (“Focus” section).
In order to avoid repetition, and make the discussion more logical, the content is
presented in an integrated fashion. So, the content for areas that are listed multiple
times under the sub-topics (Ex: Front Controllers) will appear only once.

Finally, at the end of each topic will be a couple of representative questions, similar to
those you will find on the examination. You might choose to take these questions after
looking at the Snapshot, if you feel confident that you know the exam topic well, or you
can take these questions as a wrap-up to your studying the Focus area content.

If, in working through this guide, you discover that you are weak in some areas, you
should utilize the online Programmers Reference Guide to Zend Framework, available
at http://framework.zend.com/manual. This extensive documentation presents highly
detailed discussions on various topics along with multiple code examples. Please note
that any suggestion within this guide to consult the "Reference Guide" is referring to
this document.

If you would like more practice in answering questions about the exam, including
taking a simulated exam, and have a live instructor to answer your questions and guide
your preparation studies, consider taking Zend’s online Zend Framework Certification
course.

Zend Framework is abbreviated as "ZF" for brevity throughout this guide.

Zend_Acl

Definitions Use / Purpose Resource / Role

Rules

CERTIFICATION TOPIC : AUTHENTICATION &
 AUTHORIZATION

A C L , A U T H

S N A P S H O T

Zend_Auth

Definitions Use / Purpose Identity

Identity Persistence Results Object

Zend Framework: Authentication &
 Authorization

For the exam, recall that…

First, it is important that you are able to distinguish between the two functions:

Authentication is the process of verifying a user’s identity against some set of pre-

determined criteria – “are they who they claim to be?” …

Authorization is the process of assigning rights to the user based on their identity –

“they are entitled to do the following actions because of who they are” …

Zend Framework provides components for both functions – Zend_Auth and Zend_Acl.

ZEND_AUTH

Zend_Auth provides an API for authentication and includes adapters for the most commonly

used scenarios.

Here are some things to keep in mind:

 Zend_Auth implements the Singleton pattern through its static getInstance()

method.

o Singleton pattern means only one instance of the class is available at any one time

o The new operator and the clone keyword will not work with this class… use

Zend_Auth::getInstance() instead

 The adapters authenticate against a particular service, like LDAP, RDBMS, etc.; while their

behavior and options will vary, they share some common actions:

o accept authenticating credentials

o perform queries against the service

o return results

Identity Persistence

An important aspect of the authentication process is the ability to retain the identity, to have

it persist across requests in accordance with the PHP session configuration. This is

accomplished in ZF with the method Zend_Auth::authenticate(). The default storage

class is Zend_Auth_Storage_Session (which uses Zend_Session). A custom class can

be used instead by creating an object that implements Zend_Auth_Storage_Interface

and passing it to Zend_Auth::setStorage().

Persistence can be customized by using an adapter class directly, foregoing the use of

Zend_Auth entirely.

A U T H , A C L

F O C U S

ZEND_AUTH

Authentication Results

Zend_Auth adapters return an instance of Zend_Auth_Result with authenticate() to

represent the results of an authentication attempt. The Zend_Auth_Result object exposes the

identity that was used to attempt authentication.

Adapters populate and return a Zend_Auth_Result object upon an authentication attempt, so

that the following four methods can provide a set of user-facing operations common to the

results of Zend_Auth adapters:

 isValid() returns TRUE if and only if the result represents a

 successful authentication attempt

 getCode() returns a Zend_Auth_Result constant identifier for

 confirming success or determining the type of

 authentication failure

 getIdentity() returns the identity of the authentication attempt

 getMessages() returns an array of messages regarding a failed

 authentication attempt

Zend_Auth adapters allow for the use of authentication technologies, such as

 LDAP … Zend_Auth_Adapter_Ldap

 Database table … Zend_Auth_Adapter_DbTable

 HTTP … Zend_Auth_Adapter_Http

 OpenID … Zend_Auth_Adapter_OpenId

ZEND_ACL

Zend_Acl provides a lightweight and flexible Access Control List (ACL) feature set along with

privileges management, generally via the use of request objects and protected objects.

Zend_Acl can be easily integrated with ZF MVC components through use of an Action Helper

or Front Controller Plugin. Keep in mind that this component is only involved with authorizing

access, and does not in any way verify identity (that process is authentication, in ZF

accomplished with Zend_Auth).

By using an ACL, an application controls how request objects (Roles) are granted access to

protected objects (Resources). Rules can be assigned according to a set of criteria – see

Assigning Rules via Assertions later in this document. Combining the processes of

authentication and authorization is commonly called “access control”.

Access control rules are specified with Zend_Acl::allow() and Zend_Acl::deny().
Note that calling Zend_Acl::isAllowed() against a Role or Resource that was not
previously added to the ACL results in an exception.

Some definitions you should know:

 Resource: an object with controlled access

 Role: an object that requests access to a Resource

Creating An ACL

Creating an ACL utilizing Zend_Acl is easy, as shown in the sample code below:

Creating Resources

Creating a resource is a simple process - a class needs only implement the

Zend_Acl_Resource_Interface, consisting of the single method getResourceId(), in

order for Zend_Acl to consider the object a Resource. Zend_Acl_Resource is provided as

a basic implementation for extensibility.

<?php
require_once 'Zend/Acl.php';

$acl = new Zend_Acl();

ZEND_ACL

Creating Roles

In a process similar to Resource creation, a class only has to implement the

Zend_Acl_Role_Interface, consisting of the single method getRoleId(), for

Zend_Acl to consider the object a Role. Zend_Acl_Role is provided as a basic

implementation for extensibility.

Inheritance - Resources

Zend_Acl provides a tree structure onto which multiple resources can be added. Queries on

a specific resource will automatically search the Resource’s hierarchy for rules assigned to its

parent Resources, allowing for simple inheritance of rules.

Accordingly, if a default rule is to be applied to all resources within a branch, it is easiest to

assign the rule to the parent. Assigning exceptions to those resources not to be included in

the parent rule can be easily imposed via Zend_Acl.

Note that a Resource can inherit from only one parent Resource, although that parent can

trace back to its own parent, and so on.

Inheritance - Roles

Unlike Resources, in Zend_Acl a Role can inherit from one or more Roles to support the

inheritance of rules. While this ability can be quite useful at times, it also adds complexity to

inheritance. In the case of multiple inheritance, if a conflict arises among the rules, the order

in which the Roles appear determine the final inheritance - the first rule found via query is

imposed.

Assigning Rules via Assertions

There are times when a rule should not be absolute – where access to a Resource by a Role

should depend on a number of criteria. Zend_Acl has built-in support for implementing rules

based upon conditions that need to be met, with the use of Zend_Acl_Assert_Interface

and the method assert(). Once the assertion class is created, an instance of the assertion

class must be supplied when assigning conditional rules. A rule thus created will be imposed

only when the assertion method returns TRUE.

TEST YOUR KNOWLEDGE : QUESTIONS

Zend_Auth throws an exception upon an unsuccessful
authentication attempt due to invalid credentials (e.g., the
username does not exist).

a. True
b. False

Zend_Acl supports _____ inheritance among Resource objects.

a. cyclic

b. multiple

c. no

d. single

S A M P L E E X A M

Q U E S T I O N S

TEST YOUR KNOWLEDGE : ANSWERS
= CORRECT

Zend_Acl supports _____ inheritance among Resource objects.

a. cyclic

b. multiple

c. no

d. single

Zend_Auth throws an exception upon an unsuccessful
authentication attempt due to invalid credentials (e.g., the
username does not exist).

a. True
b. False

Coding Conventions

Use / Purpose

Naming Conventions Closing Tags

CERTIFICATION TOPIC : CODING CONVENTIONS

C O D I N G

S N A P S H O T

Zend Framework: Coding Standards

For the exam, here’s what you should know already …

You should know general coding standards for using PHP (Ex: tags, code demarcation, syntax

for strings, & arrays, …) as well as accepted naming conventions.

You should know the rules, guidelines, and code standards established for the Zend

Framework.

C O D I N G

F O C U S

ZF PHP CODING STANDARDS

Good coding standards are important in any development project, particularly when multiple

developers are working on the same project. Having coding standards helps to ensure that

the code is of high quality, has fewer bugs, and is easily maintained.

PHP File Formatting

 Never use the closing tag “?>” for files that contain only PHP code – this prevents trailing

whitespace from being included in the output

 Indentation should be 4 spaces, not using tabs

 Maximum line length is 120 characters, with the goal limit of 80 characters for clarity

 Lines should be terminated with a linefeed (LF, ordinal 10, hexadecimal 0x0A), not a

carriage return or a carriage return/linefeed combination

Naming Conventions

Class Names

 Map directly to the directories where they are stored

 Contain only alphanumeric characters; numbers are discouraged; underscores are

permitted only in place of the path separator (Example: Zend/Db/Table.php maps to

Zend_Db_Table)

 Multiple-word names: in general, each word contains a capitalized first letter, with the

remaining letters lowercase (Ex: Zend_Pdf); there are exceptions, as when a word is an

acronym or somehow non-standard (Ex: Zend_XmlRpc)

 Classes authored by ZF or its Partners must start with “Zend_” and must be stored under

the Zend/ directory hierarchy; conversely, any code not authored by Zend or its

Partners must never start with “Zend_”

Interfaces

 Interface classes must follow the same conventions as other classes (outlined above),

and end with the word "Interface" (Ex: Zend_Log_Adapter_Interface)

Filenames

 For all files, only alphanumeric characters, underscores, and the hyphen character ("-")
are permitted; spaces are prohibited

 Any file that contains any PHP code should end with the extension ".php", with the
exception of View Scripts

ZF PHP CODING STANDARDS

Naming Conventions (continued)

Function Names

 Can only contain alphanumeric characters; underscores are not permitted; numbers are

discouraged

 Must always start with a lowercase letter

 Multi-word names: the first letter of the first word is lowercase, the first letter of each

subsequent word must be capitalized, known as "camelCase"

 Should be explanatory and use enough language as is practical to enhance the

understandability of the code

 Accessors for objects should be prefixed with ”get“ or “set” (OOP)

 (Note: use of functions in the global scope are discouraged; wrap these functions in a

static class instead)

Method Names

 Must always start with a lowercase letter

 Should contain the Pattern name when practical

 For methods declared with a ”private” or “protected” construct, the first character of the

variable name must be a single underscore (the only time an underscore is permitted in a

method name)

Variable Names

 Can only contain alphanumeric characters; underscores are not permitted; numbers are

discouraged

 Must always start with a lowercase letter and follow the “camelCase” formatting rules

 For class member variables declared with a ”private” or “protected” construct, the first

character of the variable name must be a single underscore (the only time an underscore

is permitted in a variable name)

 Should be explanatory and use enough language as is practical to enhance the

understandability of the code

ZF PHP CODING STANDARDS

Naming Conventions (continued)

Constants

 Can contain alphanumeric characters, underscores, and numbers

 Must always use capitalized letters

 Multi-word names: must separate each word with an underscore (Ex: EMBED_SUPPRESS)

 Must define as class members using the “const” construct

 Note: defining constants in the global scope is discouraged

Coding Style

PHP Code Demarcation

 PHP code must be delimited by the full-form, standard PHP tags: <?php and ?>

 Short tags are never allowed

Strings - Literals

 When a string is literal (containing no variable substitutions), the apostrophe or "single

quote" must be used to demarcate the string (Ex: $a = ‘Example String’;)

 When a literal string itself contains apostrophes, the string can be demarcated with

quotation marks “ “ ; this is especially encouraged for SQL statements

Strings - Concatenation

 Strings may be concatenated using the "." operator; a space must always be added

before and after the "." operator to improve readability (Ex: 'Zend'.' '.'Tech')

 Can break the statement into multiple lines to improve readability; each successive line

should be padded with whitespace so that the "."; operator is aligned under the
"=" operator (Example: $sql = "SELECT 'id', 'name' FROM 'people' "

 . "WHERE 'name' = 'Susan' "

 . "ORDER BY 'name' ASC ";

ZF PHP CODING STANDARDS

Coding Style: (continued)

Arrays – Numerically Indexed

 Negative numbers are not allowed as indices

 Can start with a non-negative number, but discouraged; better to use a base index of 0

 When declared with the array construct, a trailing space must be added after each

comma delimiter for readability (Example: $anyArray = array(1, 2, 'Zend');)

 For multi-line indexed arrays using the array construct, each successive line must be

padded with spaces so that the beginning of each line aligns as shown:

 $sampleArray = array(1, 2, 3, 'Zend', 'Studio',
 $a, $b, $c,
 56.44, $d, 500)

Arrays - Associative

 When declared with the array construct, the statement should be broken into multiple

lines; each successive line must be padded with whitespace so that both the keys and

the values are aligned, as shown:

 $sampleArray = array('firstKey' => 'firstValue',
 'secondKey' => 'secondValue');

Classes - Declaration

 Classes are named following naming convention rules

 The brace is always written on the line underneath the class name ("one true brace" form)

 Code within a class must be indented four spaces (no tabs)

 Restricted to only one class per PHP file

 Placing additional code into a class file is discouraged; if utilized, two blank lines must

separate the class from additional PHP code in the file (Example: Class Declaration)

/**
 * Documentation Block Here
 */
class SampleClass
{
 // entire content of class must be indented four spaces
}

ZF PHP CODING STANDARDS

Coding Style (continued)

Class Member Variables

 Member variables must be named following variable naming conventions (see Naming

section)

 Variables declared in a class must be listed at the top of the class, prior to declaring any

methods

 The var construct is not permitted; member variables always declare their visibility by

using one of the private, protected, or public constructs

 Accessing member variables directly by making them public is discouraged in favor of

accessor methods (set/get).

Functions and Methods - Declaration

 Functions must be named following naming convention rules (see Naming section)

 Methods inside classes must always declare their visibility by using one of the private,

protected, or public constructs

 The brace is always written on the line underneath the function name ("one true brace"

form) ; no space between the function name and the opening argument parenthesis

 Functions in the global scope are strongly discouraged

 Pass-by-reference is allowed in the function declaration only; call-time pass-by-reference

is prohibited

 Example: Function Declaration in a class

 /**
 * Documentation Block Here
 */
class Foo
{
 /**
 * Documentation Block Here
 */
 public function bar()
 {
 // entire content of function
 // must be indented four spaces
 }
}

ZF PHP CODING STANDARDS

Coding Style (continued)

Functions and Methods - Usage:

 Functions arguments are separated by a single trailing space after the comma delimiter

 Call-time pass-by-reference is prohibited (see Declarations section)

 For functions whose arguments permit arrays, the function call may include the "array"

construct and can be split into multiple lines to improve readability;; standards for

writing arrays still apply; Ex:

 threeArguments(array(1, 2, 3), 2, 3);

 threeArguments(array(1, 2, 3, 'Zend', 'Studio',
 $a, $b, $c,
 56.44, $d, 500), 2, 3);

Control Statements – if / else / else if:

 Control statements based on the if and else if constructs must have a single space

before the opening parenthesis of the conditional, and a single space after the closing

parenthesis

 Within the conditional statements between the parentheses, operators must be

separated by spaces for readability inner parentheses are encouraged to improve logical

grouping of larger conditionals

 The opening brace is written on the same line as the conditional statement; closing brace

is always written on its own line; any content within braces must be indented four spaces

 if ($a != 2) {
 $a = 2;
 }

 For "if" statements that include "else if " or "else", the formatting conventions are

as shown in the following examples:

 if ($a != 2) { if ($a != 2) {
 $a = 2; $a = 2;
 } else (} else if ($a == 3) {
 $a = 7; $a = 4;
 } } else {
 $a = 7;

 }

ZF PHP CODING STANDARDS

Coding Style (continued)

Switch

 Control statements written with the "switch" construct must have a single space before

the opening parenthesis of the conditional statement, and a single space after the

closing parenthesis

 All content within the "switch" statement must be indented four spaces; content under

each "case" statement must be indented an additional four spaces

 All switch statements must have a default case

Inline Documentation – Documentation Format

 All documentation blocks ("docblocks") must be compatible with the phpDocumentor

format

 All source code files written for Zend Framework or that operate with the framework

must contain a "file-level" docblock at the top of each file and a "class-level" docblock

immediately above each class

Inline Documentation - Files

 Every file that contains PHP code must have a header block at the top of the file that

contains these phpDocumentor tags at a minimum:

/**
 * Short description for file
 *
 * Long description for file (if any)...
 *
 * LICENSE: Some license information
 *
 * @copyright 2005 Zend Technologies
 * @license http://www.zend.com/license/3_0.txt PHP License 3.0
 * @version $Id:$
 * @link http://dev.zend.com/package/PackageName
 * @since File available since Release 1.2.0
*/

Inline Documentation - Classes

 Similar to Files, every class must have a docblock that contains these phpDocumentor

tags at a minimum - Descriptions, @copyright, @license, @version,

@link, @since, @deprecated

ZF PHP CODING STANDARDS

Coding Style (continued)

Inline Documentation - Functions

 Every function, including object methods, must have a docblock that minimally contains:

a function description; all the arguments; all possible return values

 Not necessary to use the “@access” tag because the access level is already known from

the “public”, “private”, or “protected” construct used to declare the function

 If a function or method might throw an exception, it is best to use “@throws”

 Example: @throws exceptionclass [description]

TEST YOUR KNOWLEDGE : QUESTIONS

The filename "Zend/Db/Table.php" must map to the class name
_________.?

Is the following class name valid?: My_Foo_123

a. Yes
b. No

S A M P L E E X A M

Q U E S T I O N S

The filename "Zend/Db/Table.php" must map to the class name
_________.?

 Zend_Db_Table

Is the following class name valid?: My_Foo_123

a. Yes
b. No

TEST YOUR KNOWLEDGE : ANSWERS
= CORRECT

Zend_Db

Definitions Use / Purpose Adapters

Zend_Db_Statement

Definitions Use / Purpose Named Parameters

Zend_Db_Select

Definitions Use / Purpose Fluent Interface

Quoting Complex Queries Zend_Db::factory()

Constructors Lazy Connections

D A T A B A S E S

S N A P S H O T

CERTIFICATION TOPIC : DATABASES

M A I L
S N A PS H O T

Zend_Db_Table

Definitions Use / Purpose Primary Keys

Application Logic Naming Methods

Zend Framework - Databases

For the exam, here’s what you should know already …

You should be able to create and work with Zend_Db component extensions, such as

_Adapter, _Statement, _Table, and _Library.

You should know how to connect to a database, in particular using constructor arguments

and lazy connections.

You should know how to specify database configurations within a Configuration file.

You should be able to fetch data in rows, columns, and individually, and be able to utilize

different fetch modes. This includes the ability to fetch data from content returned by

executing a statement. You should know how to construct complex queries.

You should be able to manipulate data within a database (insert, modify, delete).

You should know what a Fluent Interface is, including how and when to use it.

Methods:

You should know how to insert application logic into the appropriate method.

You should know how and when to use the quoteIdentifier method.

You should understand how to utilize the Zend_Db::factory() options.

D A T A B A S E S

F O C U S

 ZEND_DB

Zend_Db and its related classes provide a simple SQL database interface for Zend Framework.

Zend_Db_Adapter_Abstract is the base class for connecting PHP applications to a

RDBMS. They create a bridge from vendor-specific PHP extensions to a common interface, so

that the PHP applications can be written once but deployed multiple times according to the

RDBMS with little change or effort.

Connecting to a Database

Using an Adapter and Constructor

 You create an instance of the Adapter using its constructor, which takes one argument in an

array of parameters used to declare the connection. Note: Zend_Db_Adapter uses a PHP

extension that must be enabled in the PHP environment.

Using Zend_Db::factory

The Factory method of connection is an alternative to the use of the Constructor. Instead, the

Adapter instance is created using the static method Zend_Db::factory(), which
dynamically loads the Adapter class file on demand utilizing

Zend_Loader::loadClass().

<?php

require_once 'Zend/Db/Adapter/Pdo/Mysql.php';

$db = new Zend_Db_Adapter_Pdo_Mysql(array(
 'host' => '127.0.0.1',
 'username' => 'webuser',
 'password' => 'xxxxxxxx',
 'dbname' => 'test'
));

<?php

require_once 'Zend/Db.php';

// Automatically load class Zend_Db_Adapter_Pdo_Mysql and create
// an instance of it.
$db = Zend_Db::factory('Pdo_Mysql', array(
 'host' => '127.0.0.1',
 'username' => 'webuser',
 'password' => 'xxxxxxxx',
 'dbname' => 'test'
));

ZEND_DB

If you create your own class that extends Zend_Db_Adapter_Abstract, but you do not

name your class with the "Zend_Db_Adapter" package prefix, you can use the factory()

method to load your Adapter, providing you specify the leading portion of the adapter class

with the 'adapterNamespace' key in the parameters array.

Using Zend_Config with the Zend_DB Factory

You can specify either argument of the factory() method as an object of type
Zend_Config. If the first argument is a Config object, it is expected to contain a property

named ’adapter’, which contains the string providing the adapter class name base.

Optionally, the object may contain a property named ’params ’, with sub-properties

corresponding to adapter parameter names. This is used only if the second argument of the

factory() method is absent. Example:

If an optional second argument of the factory() method exists, it can be an associative

array containing entries corresponding to adapter parameters. If the first argument is of the

type Zend_Config, it is assumed to contain all parameters, and the second argument is

ignored.

<?php

require_once 'Zend/Config.php';
require_once 'Zend/Db.php';

$config = new Zend_Config(
 array(
 'database' => array(
 'adapter' => 'Mysqli',
 'params' => array(
 'dbname' => 'test',
 'username' => 'webuser',
 'password' => 'secret',
)
)
)
);

$db = Zend_Db::factory($config->database);

ZEND_DB

Passing Options to the Factory

Presented below is a code example of how to pass an option to the Factory – in this case, it is

the option for automatically quoting identifiers. You can find other examples in the Reference

Guide.

Managing Lazy Connections

Creating an instance of an Adapter class results in the Adapter saving the connection
parameters, but the actual connection is on demand, triggered the first time a query is
executed. This ensures that creating an Adapter object is quick and not resource
intensive.

To force the Adapter to connect to the RDBMS, use the getConnection() method,
which returns an object for the connection represented by the required PHP database
extension. For example, using any of the Adapter classes for PDO drivers will result in
getConnection() returning the PDO object, after initiating it as a live connection to
the specific database. Forcing a connection can be a useful tool in capturing
exceptions thrown by RDBMS connection failures (Ex: invalid account credentials).

It can be useful to force the connection if you want to catch any exceptions it throws
as a result of invalid account credentials, or other failure to connect to the RDBMS
server. These exceptions are not thrown until the connection is made, so it can help
simplify your application code if you handle the exceptions in one place, instead of at
the time of the first query against the database.

<?php
$options = array(
 Zend_Db::AUTO_QUOTE_IDENTIFIERS => false
);

$params = array(
 'host' => '127.0.0.1',
 'username' => 'webuser',
 'password' => 'xxxxxxxx',
 'dbname' => 'test',
 'options' => $options
);

$db = Zend_Db::factory('Pdo_Mysql', $params);

ZEND_DB

Fetching Data

(Note: examples in this section use the ZF Sample Bug-Tracking Database, shown in the Programmers Guide)

You can run a SQL SELECT query and retrieve its results in one step using the fetchAll()

method. The first argument to this method is a string containing a SELECT statement.

Alternatively, the first argument can be an object of class Zend_Db_Select. The Adapter

automatically converts this object to a string representation of the SELECT statement.

The second argument to fetchAll() is an array of values to substitute for parameter

placeholders in the SQL statement.

Changing the Fetch Mode

By default, fetchAll() returns an array of rows, each of which is an associative array. The

keys of this array are the columns/column aliases named in the select query. You can specify a

different style of fetching results using the setFetchMode() method. The modes supported

are identified by constants:

 Zend_Db::FETCH_ASSOC Default Fetch mode for Adapter classes

returns data in an associative array; the keys are the column names, as strings

 Zend_Db::FETCH_BOTH

returns data in an array of arrays; the keys are strings used in the FETCH_ASSOC mode, and

integers as used in the FETCH_NUM mode

 Zend_Db::FETCH_COLUMN

returns data in an array of values, where each value is returned by one column of the result

set; by default, the first column is used and indexed by 0

 Zend_Db::FETCH_OBJ

returns data in an array of objects; the default class is the PHP built-in class stdClass;

columns of the result set are available as public properties of the object

<?php

$sql = 'SELECT * FROM bugs WHERE bug_id = ?';

$result = $db->fetchAll($sql, 2);

ZEND_DB

Changing Fetch Mode – Example: (more examples in Reference Guide)

Inserting Data

New rows can be added to a table in the database using the insert() method. The first

argument is a string naming the table, the second argument an associative array mapping

column names to data values. Example:

Quoting Values and Identifiers

SQL queries often need to include the values of PHP variables in SQL expressions, which can

be risky if a value in the PHP string contains certain symbols, such as the quote symbol. This

would not only result in invalid SQL, but consequently would impose a security risk (see the

Security section).

The Zend_Db_Adapter class provides convenient functions to help reduce vulnerabilities

to SQL Injection attacks in PHP code. The solution is to escape special characters such as

quotes in PHP values before they are interpolated into SQL strings. This protects against both

accidental and deliberate manipulation of SQL strings by PHP variables that contain special

characters.

<?php
$db->setFetchMode(Zend_Db::FETCH_OBJ);

$result = $db->fetchAll('SELECT * FROM bugs WHERE bug_id = ?', 2);

// $result is an array of objects
echo $result[0]->bug_description;

<?php
$data = array(
 'created_on' => '2007-03-22',
 'bug_description' => 'Something wrong',
 'bug_status' => 'NEW'
);

$db->insert('bugs', $data);

ZEND_DB

Quoting Values and Identifiers (continued)

 Using quote()

The quote() method accepts a single argument, a scalar string value returned with special

characters escaped according to the RDBMS being used, and surrounded by string value

delimiters. The SQL string value delimiter for MySQL is the single-quote (').

 Using quoteInto()

You can use the quoteInto() method to interpolate a PHP variable into a SQL
expression or statement. It takes two arguments: the first is a string containing a
placeholder symbol (?), and the second is a value or PHP variable that should be
substituted for that placeholder.

The placeholder symbol is the same symbol used by many RDBMS brands for
positional parameters, but the quoteInto() method only emulates query
parameters. The method simply interpolates the value into the string, escapes special
characters, and applies quotes around it. True query parameters maintain the
separation between the SQL string and the parameters as the statement is parsed in
the RDBMS server.

<?php
$name = $db->quote("O'Reilly");
echo $name;
// 'O\'Reilly'

$sql = "SELECT * FROM bugs WHERE reported_by = $name";

echo $sql;
// SELECT * FROM bugs WHERE reported_by = 'O\'Reilly'

<?php
$sql = $db->quoteInto("SELECT * FROM bugs WHERE reported_by = ?",
 "O'Reilly");

echo $sql;

// SELECT * FROM bugs WHERE reported_by = 'O\'Reilly'

ZEND_DB

Quoting Values and Identifiers (continued)

 Using quoteIdentifier()

As with values, if PHP variables are used to name tables, columns, or other identifiers
in SQL statements, the related strings may need to be quoted. By default, SQL
identifiers have syntax rules like PHP and most other programming languages. For
example, identifiers should not contain spaces, certain punctuation or special
characters, or international characters. Also certain words are reserved for SQL syntax,
and should not be used as identifiers.

However, SQL has a feature called delimited identifiers, which allows broader choices
for the spelling of identifiers. If you enclose a SQL identifier in the proper type of
quotes, you can use identifiers with spellings that would be invalid without the
quotes. Delimited identifiers can contain spaces, punctuation, or international
characters. You can also use SQL reserved words if you enclose them in identifier
delimiters.

The quoteIdentifier() method works like quote(), but applies the identifier
delimiter characters to the string according to the type of Adapter used. For example,
standard SQL uses double-quotes (") for identifier delimiters, and most RDBMS brands
use that symbol. MySQL uses back-quotes (`) by default. The quoteIdentifier()
method also escapes special characters within the string argument. SQL-delimited
identifiers are case-sensitive, unlike unquoted identifiers. Therefore, the use of
delimited identifiers require that the identifier is spelled exactly as it is stored in the
schema, including the case of the letters.

In most cases where SQL is generated within Zend_Db classes, the default is that all
identifiers are delimited automatically; this default can be changed by using
Zend_Db::AUTO_QUOTE_IDENTIFIERS when instantiating the Adapter.

<?php
// we might have a table name that is an SQL reserved word
$tableName = $db->quoteIdentifier("order");

$sql = "SELECT * FROM $tableName";

echo $sql
// SELECT * FROM "order"

ZEND_DB

ZEND_DB_STATEMENT

Like the methods fetchAll()and insert(), a statement object can be used to gain
more options for running queries and fetching result sets. Zend_Db_Statement is
based on the PDOStatement object in the PHP Data Objects extension.

Creating a Statement

Typically, a statement object is returned by the query() method of the database Adapter

class. This method is a general way to prepare any SQL statement. The first argument is a

string containing an SQL statement. The optional second argument is an array of values to

bind to parameter placeholders in the SQL string. The statement object corresponds to a SQL

statement that has been prepared and executed once with the bind-values specified. If the

statement was a SELECT query or other type of statement that returns a result set, it is now

ready to fetch results. A statement can be created with its constructor, but this is less typical.

Note: there is no factory method to create this object.

Executing a Statement

If a statement is created using its constructor, or if a statement is to be executed multiple

times, then the statement object needs to be executed. Use the execute() method of the

statement object. The single argument is an array of values to bind to parameter placeholders

in the statement.

If positional parameters, or those that are marked with a question mark symbol (?), are used,

pass the bind values in a plain array. If named parameters, or those that are indicated by a

string identifier preceded by a colon character (:), pass the bind values in an associative array.

The keys of this array should match the parameter names. Execution (positional) example:

<?php

$stmt = $db->query('SELECT * FROM bugs WHERE reported_by = ? AND

 bug_status = ?', array('goofy', 'FIXED'));

<?php

$sql = 'SELECT * FROM bugs WHERE reported_by = ? AND

 bug_status = ?';

$stmt = new Zend_Db_Statement_Mysqli($db, $sql);

$stmt->execute(array('goofy', 'FIXED'));

ZEND_DB

Fetching Content

You can call methods on the statement object to retrieve rows from SQL statements
that produce a result set – for example, SELECT, SHOW, DESCRIBE, EXPLAIN.

INSERT, UPDATE, and DELETE are examples of statements that do not produce a result
set – these SQL statements can be executed using Zend_Db_Statement,but cannot
have results fetched by method calls. Code Example: fetch() in a loop

ZEND_DB_SELECT

The Zend_Db_Select object represents a SQL SELECT query statement. The class has
methods for adding individual parts to the query. Some parts of the query can be
specified using PHP methods and data structures, and the class will form the correct
SQL syntax. After the query is built, it can be executed as if written as a string.
Important features of this component include:

 Object-oriented methods for specifying SQL queries in a piece-by-piece manner

 Database-independent abstraction of some parts of the SQL query

 Automatic quoting of metadata identifiers in most cases, to support identifiers
containing SQL reserved words and special characters

 Quoting identifiers and values, to help reduce risk of SQL injection attacks

Creating a Select Object

To create an instance of a Zend_Db_Select object, use the select() method of a

Zend_Db_Adapter_Abstract object. Ex: Adapter select()method

<?php

$stmt = $db->query('SELECT * FROM bugs');

while ($row = $stmt->fetch()) {

 echo $row['bug_description'];

}

<?php

$db = Zend_Db::factory(...options...);

$select = $db->select();

ZEND_DB

Building Select Queries

When building a query, clauses can be added to the Zend_Db_Select object individually,

using a separate method for each.

Using a Fluent Interface

A fluent interface means that each method returns a reference to the object on which it was

called, so that another method can be immediately called. Ex:

Creating Complex Queries

Zend Framework provides numerous ways to add, modify, and remove data utilizing its

components and extensibility. Presented below are just some of the ways to handle data –

additional information and code examples can be found in the Programmers Guide.

 Add FROM Clause: Specify the table name as a simple string; Zend_Db_Select
 applies identifier quotes around the table name so that special
 characters can be used.

<?php
$select = $db->select()
 ->from(...specify table and columns...)
 ->where(...specify search criteria...)
 ->order(...specify sorting criteria...);

<?php
// Create the Zend_Db_Select object
$select = $db->select();

// Add a WHERE clause
$select->where(...specify search criteria...)

// Add an ORDER BY clause
$select->order(...specify sorting criteria...);

<?php
// Build this query:
// SELECT *
// FROM "products"

$select = $db->select()
 ->from('products');

ZEND_DB

 Specify Schema: Some RDBMS brands support a schema specifier for a table.

 Specify the table name as schemaName.tableName, where

 Zend_Db_Select quotes each part individually; alternatively

 specify the schema name separately. A schema name

 specified in the table name takes precedence over a schema

 provided separately in the event that both are presented.

 Add Column: The columns to be selected from a table can be specified in the

 second argument of from(). The default is the wildcard *,

 meaning all columns.

<?php
// Build this query:
// SELECT *
// FROM "myschema"."products"

$select = $db->select()
 ->from('myschema.products');

// or

$select = $db->select()
 ->from('products', '*', 'myschema');

<?php
// Build this query:
// SELECT p."product_id", p."product_name"
// FROM "products" AS p
$select = $db->select()
 ->from(array('p' => 'products'),
 array('product_id', 'product_name'));

// Build the same query, specifying correlation names:
// SELECT p."product_id", p."product_name"
// FROM "products" AS p
$select = $db->select()
 ->from(array('p' => 'products'),
 array('p.product_id', 'p.product_name'));

// Build this query with an alias for one column:
// SELECT p."product_id" AS prodno, p."product_name"
// FROM "products" AS p
$select = $db->select()
 ->from(array('p' => 'products'),
 array('prodno' => 'product_id', 'product_name'));

ZEND_DB

 Add Table: Many useful queries involve using a JOIN to combine rows

 from multiple tables; tables can also be added to a

 Zend_Db_Select query using the join() method.

 Using this method is similar to the from() method except a

 condition can also be specified in most cases.

 The second argument to join() is a string that is the join

 condition, an expression that declares the criteria by

 which rows in one table match rows in the the other table.

 Add WHERE clause: The where() method can specify criteria for restricting rows

 of the result set. The first argument of this method is a SQL

 expression, which is used in a SQL WHERE clause in the query.

<?php
// Build this query:
// SELECT p."product_id", p."product_name", l.*
// FROM "products" AS p JOIN "line_items" AS l
// ON p.product_id = l.product_id

$select = $db->select()
 ->from(array('p' => 'products'),
 array('product_id', 'product_name'))
 ->join(array('l' => 'line_items'),
 'p.product_id = l.product_id');

<?php
// Build this query:
// SELECT product_id, product_name, price
// FROM "products"
// WHERE price > 100.00

$select = $db->select()
 ->from(
 'products',
 array('product_id', 'product_name', 'price'))
 ->where('price > 100.00');

ZEND_DB

 Add Order By Clause: Use Zend_Db_Select with the order()method to

 specify a column or an array of columns by which to sort. Each

 element of the array is a string naming a column, with the

 optional ASC or DESC keyword following it, separated by a

space. As with from() and group(), column names are quoted as

 identifiers, unless they contain parentheses or are an object of

 type Zend_Db_Expr.

 Add LIMIT clause: Use the limit() method in Zend_Db_Select to specify

 the count of rows and the number of rows to skip. The first

 argument to this method is the desired count of rows. The

 second argument is the number of rows to skip. Note that the

 LIMIT syntax is not supported by all RDBMS brands.

<?php
// Build this query:
// SELECT p."product_id", COUNT(*) AS line_items_per_product
// FROM "products" AS p JOIN "line_items" AS l
// ON p.product_id = l.product_id
// GROUP BY p.product_id
// ORDER BY "line_items_per_product" DESC, "product_id"

$select = $db->select()
 ->from(array('p' => 'products'),
 array('product_id'))
 ->join(array('l' => 'line_items'),
 'p.product_id = l.product_id',
 array('line_items_per_product' => 'COUNT(*)'))
 ->group('p.product_id')
 ->order(array('line_items_per_product DESC', 'product_id'));

<?php
// Build this query:
// SELECT p."product_id", p."product_name"
// FROM "products" AS p
// LIMIT 10, 20

$select = $db->select()

->from(array('p' => 'products'), array('product_id',
 'product_name'))
->limit(10, 20);

ZEND_DB

ZEND_DB_TABLE

The Zend_Db_Table class is an object-oriented interface to database tables. It provides

methods for many common operations on tables. The base class is extensible, allowing the

addition of custom logic. The Zend_Db_Table solution is an implementation of the Table

Data Gateway pattern and includes a class that implements the Row Data Gateway pattern.

Defining a Table Class
To access a table in the database, define a class that extends Zend_Db_Table_Abstract.

Defining a Table Name and Schema
Declare the database table for which the class is defined, using the protected variable

$_name. This is a string, with the name of the table spelled exactly as it appears in the

database. If no table name is supplied, it defaults to the name of the class (which also must

exactly match the spelling of the table name in the database).

 Example: Declare Table Class with Explicit Table Name

 Example: Declare Table Class with Implicit Table Name

<?php
class Bugs extends Zend_Db_Table_Abstract
{
 protected $_name = 'bugs';
}

<?php
class Bugs extends Zend_Db_Table_Abstract
{
 //table name matches class name, by default
}

<?php
class Bugs extends Zend_Db_Table_Abstract
{
 protected function _setupTableName()
 {
 $this->_name = 'bugs';
 parent::_setupTableName();
 }
}

ZEND_DB

Overriding Table Setup Methods

When an instance of a Table class is created, the constructor calls a set of protected methods

that initialize metadata for the table. These methods can be extended to define metadata

explicitly. Note: remember to call the method of the same name in the parent class at the end

of the method. Code Example:

The setup methods that can be overridden are:

 _setupDatabaseAdapter()
 checks that an adapter has been provided; gets a default adapter from the
 registry if needed. By overriding this method, you can set a database adapter
 from some other source.

 _setupTableName()
 defaults the table name to the name of the class. By overriding this method,
 you can set the table name before this default behavior runs.

 _setupMetadata()
 sets the schema if the table name contains the pattern "schema.table"; calls
 describeTable() to get metadata information; defaults $_cols array to the
 columns reported by describeTable(). Override this method to specify the
 columns.

 _setupPrimaryKey()
 defaults the primary key columns to those reported by describeTable();
 checks that the primary key columns are included in the $_cols array.
 Override this method to specify the primary key columns.

TEST YOUR KNOWLEDGE : QUESTIONS

S A M P L E E X A M

Q U E S T I O N S

Zend_Db_Select supports querying columns containing
expressions (e.g., LOWER(someColumn))

a. True
b. False

Zend_Db contains a factory() method by which you may
instantiate a database adapter object

a. True
b. False

TEST YOUR KNOWLEDGE : ANSWERS = CORRECT

Zend_DB_Select supports querying columns containing
expressions (e.g., LOWER(someColumn))

a. True
b. False

Zend_Db contains a factory() method by which you may
instantiate a database adapter object

a. True
b. False

Zend_Log

Use / Purpose Objects & Events Writer

Formatters & Filters

Zend_Debug

Use / Purpose Dump Method

CERTIFICATION TOPIC : DIAGNOSIS & MAINTENANCE

D I A G N O S I S

S N A P S H O T

 Zend Framework: Diagnosis & Maintenance

For the exam, here’s what you should know already …

You should be able to explain when and how you would use Zend_Log, including the

creation and destruction of Log objects.

You should understand how backends, filters, and formatters work within the Framework.

In addition, you should understand the difference between using Zend_Log and

Zend_Debug, and when it is appropriate to use each.

D I A G N O S I S

F O C U S

 ZEND_LOG

The Zend_Log component supports multiple log backends, formatting messages sent to the

log, and filtering messages from being logged. These functions are divided into the following

objects:

 Log (instance of Zend_Log)

The object most used by an application; unlimited in number; Log object must

contain at least one Writer, and can optionally contain one or more Filters

 Writer (inherits from Zend_Log_Writer_Abstract)

Responsible for saving data to storage.

 Filter (implements Zend_Log_Filter_Interface)

Prevents log data from being saved; a filter may be applied to an individual Writer,

or to a Log where it is applied before all Writers; Filters can be chained

 Formatter (implements Zend_Log_Formatter_Interface)

Formats the log data before it is written by a Writer; each Writer has exactly one

Formatter

Create a Log

To create a log, instantiate a Writer (using Zend_Log_Writer_Stream) and then pass it on

to a Log instance. More Writers can be added with addWriter(); one is required. Ex:

Logging Messages

Call the log() method of a Log instance and pass it the message with a corresponding

priority; the first parameter is a string message; the second, an integer priority. Ex:

<?php

$logger = new Zend_Log();

$writer = new Zend_Log_Writer_Stream('php://output');

<?php

$logger->log('Informational message', Zend_Log::INFO);

ZEND_LOG

Destroy a Log

Set the variable containing it to null to destroy it; this will automatically call the

shutdown() instance method of each attached Writer before the Log object is destroyed:

Priorities – Built-In

 EMERG = 0; Emergency: system is unusable

 ALERT = 1; Alert: action must be taken immediately

 CRIT = 2; Critical: critical conditions

 ERR = 3; Error: error conditions

 WARN = 4; Warning: warning conditions

 NOTICE = 5; Notice: normal but significant condition

 INFO = 6; Informational: informational messages

 DEBUG = 7; Debug: debug messages

Priorities – Custom

User-defined priorities can be added at runtime using the Log's addPriority() method.

Example: Create Priority called FOO and log the priority

<?php

$logger = null;

<?php

$logger->addPriority('FOO', 8);

<?php

$logger->log('Foo message', 8);

 ZEND_LOG

Writers

A Writer is an object that inherits from Zend_Log_Writer_Abstract, and is responsible

for recording log data to a storage backend.

Writing to Streams

Zend_Log_Writer_Stream sends log data to a PHP stream. To write log data to the PHP

output buffer, use the URL php://output. To write to file, use a Filesystem URL. By default,

the stream opens in the append mode – for another mode, provide an optional second

parameter to the constructor.

Alternatively, you can send log data directly to a stream like STDERR (php://stderr). Ex:

Writing to Databases:

Zend_Log_Writer_Db writes log information to a database table using Zend_Db. The

constructor of Zend_Log_Writer_Db receives a Zend_Db_Adapter instance, a table name,

and a mapping of database columns to event data items. Ex:

<?php

$writer = new Zend_Log_Writer_Stream('php://output');

$logger = new Zend_Log($writer);

<?php

$params = array ('host' => '127.0.0.1',

 'username' => 'malory',

 'password' => '******',

 'dbname' => 'camelot');

$db = Zend_Db::factory('PDO_MYSQL', $params);

$columnMapping = array('lvl' => 'priority', 'msg' => 'message');

$writer = new Zend_Log_Writer_Db($db, 'log_table_name',

 $columnMapping);

$logger = new Zend_Log($writer);

$logger->info('Informational message');

$logger->info('Informational message');

ZEND_LOG

Writers (CONTINUED)

Testing with the Mock

The Zend_Log_Writer_Mock is a simple writer that records the raw data it receives in an

array exposed as a public property. Ex:

The logged events can be cleared by simply setting $mock->events = array().

<?php

$mock = new Zend_Log_Writer_Mock;

$logger = new Zend_Log($mock);

$logger->info('Informational message');

var_dump($mock->events[0]);

// Array

// (

// [timestamp] => 2007-04-06T07:16:37-07:00

// [message] => Informational message

// [priority] => 6

// [priorityName] => INFO

//)

ZEND_LOG

Formatters

A Formatter is an object that is responsible for taking an event array describing a log event

and outputting a string with a formatted log line.

Some Writers are not line-oriented and cannot use a Formatter (Ex: the Database Writer, which

inserts the event items directly into database columns). For Writers that cannot support a

Formatter, an exception is thrown if you attempt to set a Formatter.

Simple Formatting

Zend_Log_Formatter_Simple is the default formatter. It is configured automatically

when you specify no formatter. The default configuration is equivalent to the following:

A formatter is set on an individual Writer object using the Writer's setFormatter() method:

Formatting to XML

Zend_Log_Formatter_Xml formats log data into XML strings. By default, it automatically

logs all items in the event data array. Ex:

It is possible to customize the root element as well as specify a mapping of XML elements to

the items in the event data array. The constructor of Zend_Log_Formatter_Xml accepts a

string with the name of the root element as the first parameter, and an associative array with

the element mapping as the second parameter:

<?php

$format = '%timestamp% %priorityName% (%priority%):

 %message%' . PHP_EOL;

$formatter = new Zend_Log_Formatter_Simple($format);

<?php

$format = '%timestamp% %priorityName% (%priority%):

 %message%' . PHP_EOL;

$formatter = new Zend_Log_Formatter_Simple($format);

ZEND_LOG

Filters

A filter object blocks a message from being written to the log.

Filtering for All Writers

To filter before all writers, you can add any number of Filters to a Log object using the

addFilter() method:

When you add one or more Filters to the Log object, the message must pass through all of the

Filters before any Writers receives it.

Filtering for a Writer Instance

To filter only on a specific Writer instance, use the addFilter() method of that Writer:

<?php
$logger = new Zend_Log();

$writer = new Zend_Log_Writer_Stream('php://output');
$logger->addWriter($writer);

$filter = new Zend_Log_Filter_Priority(Zend_Log::CRIT);
$logger->addFilter($filter);

// blocked
$logger->info('Informational message');

// logged
$logger->emerg('Emergency message');

<?php
$logger = new Zend_Log();

$writer1 = new Zend_Log_Writer_Stream('/path/to/first/logfile');
$logger->addWriter($writer1);

$writer2 = new Zend_Log_Writer_Stream('/path/to/second/logfile');
$logger->addWriter($writer2);

// add a filter only to writer2
$filter = new Zend_Log_Filter_Priority(Zend_Log::CRIT);
$writer2->addFilter($filter);

// logged to writer1, blocked from writer2
$logger->info('Informational message');

// logged by both writers
$logger->emerg('Emergency message');

ZEND_DEBUG

Dumping Variables

The static method Zend_Debug::dump() prints or returns information about an expression.

This simple technique of debugging is common, because it is easy to use in an ad hoc fashion,

and requires no initialization, special tools, or debugging environment.

The $var argument specifies the expression or variable about which the

Zend_Debug::dump() method outputs information.

The $label argument is a string to be prepended to the output of Zend_Debug::dump().
Best Practice: use labels if you are dumping information about multiple variables on a given
screen.

The boolean $echo argument specifies whether the output of Zend_Debug::dump() is
echoed or not. If true, the output is echoed. Regardless of the value of the $echo argument,
the return value of this method contains the output.

It may be helpful to understand that internally, Zend_Debug::dump()wraps the PHP

function var_dump(). If the output stream is detected as a web presentation, the output of

var_dump() is escaped using htmlspecialchars() and wrapped with (X)HTML <pre>

tags.

Using Zend_Debug::dump() is best for ad hoc debugging during software development
add code to dump a variable and then remove the code very quickly.

Also consider the Zend_Log component when writing more permanent debugging code. Ex:
use the DEBUG log level and the Stream log writer, to output the string returned by
Zend_Debug::dump().

<?php

Zend_Debug::dump($var, $label=null, $echo=true);

TEST YOUR KNOWLEDGE : QUESTIONS

Which formatters are provided with Zend_Log? (choose two)?

a. Zend_Log_Formatter_Db

b. Zend_Log_Formatter_Simple

c. Zend_Log_Formatter_Text

d. Zend_Log_Formatter_Xml

Which ONE of the following will NOT display the value of
$var?

a. echo Zend_Debug::dump($var, 'var', false);

b. ob_start();
Zend_debug::dump($var, 'var', false);
ob_end_flush();

c. Zend_Debug::dump($var, 'var', true);

d. Zend_Debug::dump($var, 'var');

S A M P L E E X A M

Q U E S T I O N S

Which formatters are provided with Zend_Log? (choose two)?

a. Zend_Log_Formatter_Db

b. Zend_Log_Formatter_Simple

c. Zend_Log_Formatter_Text

d. Zend_Log_Formatter_Xml

Which ONE of the following will NOT display the value of
$var?

a. echo Zend_Debug::dump($var, 'var', false);

b. ob_start();
Zend_debug::dump($var, 'var', false);
ob_end_flush();

c. Zend_Debug::dump($var, 'var', true);

d. Zend_Debug::dump($var, 'var');

TEST YOUR KNOWLEDGE : ANSWERS
= CORRECT

Zend_Filter

Definitions Use / Purpose Filter Classes

Filter Chains

Zend_Validate

Definitions Use / Purpose Validator Classes

Validator Chains

CERTIFICATION TOPIC : FILTERING & VALIDATION

F I L T E R I N G

S N A P S H O T

Zend Framework: Filtering & Validation

For the exam, here’s what you should know already …

You should be able to create and work with Filters, while understanding their role within an

application.

In addition, you should be able to create and utilize Validators.

F I L T E R I N G

F O C U S

<?php
require_once 'Zend/Filter/HtmlEntities.php';

$htmlEntities = new Zend_Filter_HtmlEntities();

echo $htmlEntities->filter('&'); //&
echo $htmlEntities->filter('”'); //"

ZEND_FILTER

Filters, in the general sense, function to produce some subset of the original input, based on
some criteria or transformation. Within web applications, filters are used to remove illegal
input, trim unnecessary white space, and perform other functions.

A common transformation applied within web application is to escape HTML entities (see
Security section for more information on this sub-topic).

Zend_Filter provides a set of commonly needed data filters for web applications. It also

provides a simple filter chaining mechanism by which multiple filters can be applied to a

single datum in a user-defined order.

Zend_Filter_Interface provides the basic functionality for the component, and requires
a single method filter(), to be implemented by a filter class. You can also use the static
method Zend_Filter::get() as an alternative.

Here is an example of a filter that transforms ampersands and quotes:

Standard Filters

 ZF offers a set of standard filter classes with the framework – the list is provided below.

Information on each option can be found in the Programmers Guide – you should know how

to utilize each.

 Alnum Alpha

 BaseName Digits

 Dir HtmlEntities

 Int RealPath

 StringToLower StringToUpper

 StringTrim StripTags

ZEND_FILTER

Filter Chains

When using multiple filters, it will often be necessary to impose them in a specific order,

known as ‘chaining’. Zend_Filter provides a simple way to chain filters together.

Filters are run in the order in which they were added to the component.

Here is an example of filtering a username so it is transformed to be lowercase with alphabetic

characters. Note that the non-alphabetic characters are removed before any uppercase

characters conversion because of the order of filters within the code.

Creating Custom Filters

Creating a filter is a simple process - a class needs only implement the component

Zend_Filter_Interface, consisting of the single method filter(). This method can be

implemented by user classes. Objects that implement this interface can be added to a filter

chain using Zend_Filter::addFilter(). Sample Code provided below:

<?php
// Provides filter chaining capability
require_once 'Zend/Filter.php';

// Filters needed for the example
require_once 'Zend/Filter/Alpha.php';
require_once 'Zend/Filter/StringToLower.php';

// Create a filter chain and add filters to the chain
$filterChain = new Zend_Filter();
$filterChain->addFilter(new Zend_Filter_Alpha())
 ->addFilter(new Zend_Filter_StringToLower());

// Filter the username
$username = $filterChain->filter($_POST['username']);

<?php
require_once 'Zend/Filter/Interface.php';

class MyFilter implements Zend_Filter_Interface
{
 public function filter($value)
 {
// perform transformation upon $value to arrive on $valueFiltered

 return $valueFiltered;
 }
}

ZEND_FILTER

Zend_Filter_Input

Zend_Filter_Input provides a declarative interface to associate multiple filters and

validators, apply them to collections of data, and retrieve input values after they have been

processed by the filters and validators. Values are returned in escaped format by default for

safe HTML output.

 Filters transform input values, by removing or changing characters within the value.
The goal is to "normalize" input values until they match an expected format

 Validators check input values against criteria and report whether they passed the test
or not. The value is not changed, but the check may fail

 Escapers transform a value by removing magic behavior of certain/special characters,
which have meaning in some output contexts

The process for using Zend_Filter_Input:

 Declare filter and validator rules

 Create the filter and validator processor

 Provide input data

 Retrieve validated fields and other reports

For further information about these steps, see the online Reference Guide

ZEND_VALIDATE

Validators examine input against some set of requirements and produces a boolean result

(True or False) as to whether it passed. It can also provide further information about which

requirement(s) the input did not meet in the event of validation failure.

Zend_Validate provides a set of commonly needed validators for web applications. It also

provides a simple validator chaining mechanism by which multiple validators can be applied

to a single datum in a user-defined order.

Zend_Validate_Interface provides the basic functionality for the component, and

defines two possible methods.

isValid()performs validation upon the input value, returning TRUE for success in

meeting the criteria, FALSE for failure. In the latter case, the next method is used.

 getMessages()returns an array of messages explaining the reason(s) for validation

failure. The array keys identify the reasons with string codes, and the array values

provide readable string messages. These key-value pairs are class-dependent, and

each class also has a const definition that matches each identifier for a validation

failure cause.

Note that each call to isValid() overwrites the previous call. Therefore, each

getMessages() output will apply to only the most recent validation.

<?php
require_once 'Zend/Validate/EmailAddress.php';

$validator = new Zend_Validate_EmailAddress();

if ($validator->isValid($email)) {
 // email appears to be valid
} else {
 // email is invalid; print the reasons
 foreach($validator->getMessages()as $messageId => $message) {
 echo "Validation failure '$messageId': $message\n";
 }
}

ZEND_VALIDATE

You can also use the static method Zend_Validate::is() as an alternative. The first

argument would be the data input value, passed to the isValid() method, and the second

argument would be the string that corresponds to the basename of the validation class,

relative to the Zend_Validate namespace. The is() method automatically loads the class,

creates an instance, and applies the isValid() method to the data input.

Customizing Messages

Validate classes provide a setMessage() method with which you can specify the format of

the message returned by getMessages() upon validation failure.

The first argument contains a string with the error message itself. Tokens can be incorporated

within the string to customize the message with relevant data. The token %value% is

supported by all validators, while other tokens are supported on a case-by-case basis,

according to the validation class.

The second argument contains a string with the validation failure template to be set, used

when a validation class defines more than one cause for failure.

If the second argument is missing, setMessage() assumes the message specified should be

used for the first message template declared in the validation class. As many validation classes

have only one error message template defined, there is no need to specify which template to

change. Sample Code provided below:

<?php
require_once 'Zend/Validate/StringLength.php';

$validator = new Zend_Validate_StringLength(8);

$validator->setMessage(
 'The string \'%value%\' is too short;
 it must be at least %min% characters',
 Zend_Validate_StringLength::TOO_SHORT);

if (!$validator->isValid('word')) {
 $messages = $validator->getMessages();
 echo current($messages);

 // echoes "The string 'word' is too short;
 it must be at least 8 characters"
}

<?php
require_once 'Zend/Validate.php';

if (Zend_Validate::is($email, 'EmailAddress')) {
 // Yes, email appears to be valid
}

ZEND_VALIDATE

Standard Validation Classes

 ZF offers a set of standard validation classes with the framework, as listed below. Information

on each option can be found in the Programmers Guide – you should know how to utilize

each.

 Alnum Alpha Barcode Between

 Ccnum Date Digits EmailAddress

 Float GreaterThan Hex Hostname

 InArray Int Ip LessThan

 NotEmpty Regex StringLength

Validation Chains

When using multiple validations, it will often be necessary to impose them in a specific order,

known as ‘chaining’. Zend_Validate provides a simple way to chain them together.

Validators are run in the order in which they were added to Zend_Validate .

Ex: validating whether a username is between 6 and 12 alphanumeric characters.

<?php
// Provides validator chaining capability
require_once 'Zend/Validate.php';

// Validators needed for the example
require_once 'Zend/Validate/StringLength.php';
require_once 'Zend/Validate/Alnum.php';

// Create a validator chain and add validators to it
$validatorChain = new Zend_Validate();
$validatorChain
 ->addValidator(new Zend_Validate_StringLength(6,12))
 ->addValidator(new Zend_Validate_Alnum());
// Validate the username
if ($validatorChain->isValid($username)) {
 // username passed validation
} else {
 // username failed validation; print reasons
 foreach ($validatorChain->getMessages() as $message) {
 echo "$message\n";
 }
}

ZEND_VALIDATE

Creating Custom Validators

Beyond the standard validators provided by ZF, Zend_Validate_Interface defines three

methods, isValid(), getMessages(), and getErrors(), that can be implemented by

user classes to create custom validation objects. Such objects can then be added to a

validator chain using Zend_Validate::addValidator(), or with

Zend_Filter_Input.

As mentioned earlier, validation results are returned as Boolean values, possibly along with

information as to why the validation failed (useful for usability analysis).

Zend_Validate_Abstract is used to implement the basic validation failure message

functionality, which can be extended. The extending class would utilize the isValid()

method logic and define message variables and message templates that correspond to the

types of validation failures that can occur.

Generally, the isValid() method will not throw any exceptions unless it is impossible to

determine whether or not the input value is valid (Ex: an LDAP server cannot be contacted, a

file cannot be opened, a database unavailable, etc.)

TEST YOUR KNOWLEDGE : QUESTIONS

Which of the following can be used to produce:

Click

from the following input:

Click

a. Zend_Filter_StripTags

b. Zend_Text

c. Zend_Uri

d. Zend_View

Which of the following could be used to validate an email
address (choose 2):

a. Zend_Validate::is($email, 'EmailAddress');

b. Zend_Validate::isValid($email, 'EmailAddress');

c. $validator = new Zend_Validate_EmailAddress();
if ($validator->isValid($email)) {
// email appears to be valid
}

d. $validator = new
Zend_Validate_EmailAddress($email);
if ($validator->isValid()) {
// email appears to be valid
}

S A M P L E E X A M

Q U E S T I O N S

TEST YOUR KNOWLEDGE : ANSWERS
= CORRECT

Which of the following could be used to validate an email
address (choose 2):

a. Zend_Validate::is($email, 'EmailAddress');

b. Zend_Validate::isValid($email, 'EmailAddress');

c. $validator = new Zend_Validate_EmailAddress();
if ($validator->isValid($email)) {
// email appears to be valid
}

d. $validator = new Zend_Validate_EmailAddress($email);
if ($validator->isValid()) {
// email appears to be valid
}

Which of the following can be used to produce:

Click

from the following input:

Click

a. Zend_Filter_StripTags

b. Zend_Text

c. Zend_Uri

d. Zend_View

Definitions Purpose / Use Validator Chains

Plugin Paths Error Messages

Forms - Validation

Definitions Purpose / Use Plugin Paths

Filtering

Forms - Filtering

Definitions Purpose / Use Plugin Paths

Forms - Decorators

CERTIFICATION TOPIC : FORMS

F O R M S

S N A P S H O T

Definitions Purpose / Use Metadata

Forms - Elements

Elements Options

Definitions Purpose / Use Decorators

Array Notation

Forms – Display Groups, Sub-Forms

Forms – Configuration

Definitions Config Object Options

Forms – Internationalization

Definitions Translate Object

 Zend Framework: Forms

For the exam, here's what you should know already …

You should know the basics of a form – what problems does it solve, what plugins does it use,

what role does metadata play with forms, what methods are available and what do they

control?

You should be able to explain the purpose of validators, and know how to utilize them (create,

add and retrieve from elements, …).

You should be able to explain the role of filters, and know how to utilize them (create, chain,

add and retrieve from elements, …).

 You should know the purpose of decorators and how to manipulate them.

You should understand the relationship between a form and its elements.

You should know what a display group is, as well as a sub-form, and understand the difference

between the two. You should know how they interact with decorators, and various use cases

for each.

You should understand how to create a config object with form or element options, how to

pass options, and how to pass a config object to a form or element.

Finally, you should know how to internationalize a form – what elements can be altered, how

to connect a translate object to a form or element, and how to translate form error messages.

F O R M S

F O C U S

ZEND_FORM

Zend_Form simplifies form creation and handling in your web application. It accomplishes

the following goals:

 Element input filtering and validation

 Element ordering

 Element and Form rendering, including escaping

 Element and form grouping

 Element and form-level configuration

It heavily leverages other Zend Framework components to accomplish its goals, including

Zend_Config, _Validate, _Filter, _Loader_PluginLoader, and optionally

_View

Create a Form Object

Instantiate Zend_Form to create a Form object:

It is a best practice to specify the form action and method; you can do this with the

setAction() and setMethod() accessors.

Add Elements to a Form

The 'pre-packaged' elements available with ZF are:

 button hidden image

 radio reset submit

 password text textarea

 checkbox / multiCheckbox select(regular, multiselect)

<?php

$form = new Zend_Form;

<?php
$form->setAction('/resource/process')
 ->setMethod('post');

ZEND_FORM

Add Elements to a Form (continued)

There are several options for adding elements: (1) instantiate concrete elements, pass in these

objects; (2) pass in the element type, have Zend_Form instantiate an object of the correct

type; (3) use createElement() and then attach the element to the form using

addElement(); (4) use configuration to specify elements for Zend_Form to create.

By default, these do not have any validators or filters. Therefore, you will need to configure

your elements with validators, and potentially filters …

(a) before you pass the element to the form, or

(b) via configuration options passed in when creating an element via Zend_Form, or

(c) by pulling the element from the form object and configuring it after the fact.

Example: Creating Validators for a Concrete Element Instance

In this example, you can either pass in Zend_Validate_* objects, or the name of a validator

to use – in the latter case, the validator can accept constructor arguments, which can be

passed in an array as the third parameter:

$username->addValidator('regex', false, array('/^[a-z]/i'));

Specify an Element as Required

This can be done using either an accessor or by passing an option when creating the element.

When an element is required, a 'NotEmpty' validator is added to the top of the validator

chain, ensuring that the element has a value when required.

// Instantiating an element and passing to the form object:
$form->addElement(new Zend_Form_Element_Text('username'));

// Passing a form element type to the form object:
$form->addElement('text', 'username');

$username = new Zend_Form_Element_Text('username');

// Passing a Zend_Validate_* object:
$username->addValidator(new Zend_Validate_Alnum());

// Passing a validator name:
$username->addValidator('alnum');

ZEND_FORM

Example: Creating Filters for a Concrete Element Instance

Filters are registered in basically the same way as validators. For illustration purposes, this

code adds a filter to lowercase the final value.

Using a Factory for Adding Elements

When creating a new element using Zend_Form::addElement() as a factory, you can

optionally pass in configuration options, including validators and filters to utilize.

Render a Form

Most elements use a Zend_View helper to render themselves, thereby requiring a view

object. Alternatively, you can either use the form's render() method, or simply echo it.

By default, Zend_Form and Zend_Form_Element will attempt to use the view object

initialized in the ViewRenderer, negating the need to set the view manually when using the

Zend Framework MVC. However, if you are not using the MVC view renderer you will need to

provide a Zend_View object to render the form elements. This is because

Zend_Form_Element objects use the View helpers for rendering. Printing the form in a view

script is then simple: <?= $this->form ?>

$username->addValidator('alnum')
 ->addValidator('regex', false, array('/^[a-z]/'))
 ->setRequired(true)
 ->addFilter('StringToLower');
// or, more compactly:
$username->addValidators(
 array('alnum',
 array('regex', false, '/^[a-z]/i')
))
 ->setRequired(true)
 ->addFilters(array('StringToLower'));

$form->addElement('text', 'username', array(
 'validators' => array(
 'alnum',
 array('regex', false, '/^[a-z]/i')
),
 'required' => true,
 'filters' => array('StringToLower'),
));

ZEND_FORM

Checking for Form Validity

 When a form is assessed for validity, each element is checked against the data provided. If a

key matching the element name is not present, and the item is marked as required, validations

are run with a null value. The data sources are standard ($_GET, $_POST, Web Services, etc.).

Partial Forms: Ajax requests may allow for checking on a single element or groups.

isValidPartial() will validate a partial form but, in contrast to isValid(), if a particular

key is not present, it will not run validations for that element.

Fetching Filtered and Unfiltered Values

Once the validations have been passed, filtered values can be retrieved with getValues()

For unfiltered values:

Retrieve Error Messages

Generally, when a form fails validation, it can simply be rendered again, and the errors will be

displayed using the default decorators. To inspect the errors, either use the getErrors()

method, which returns an associative array of element names/codes (= an array of error

codes), or getMessages(), which returns an associative array of element names/messages

(= an associative array of error code/error message pairs). If a given element does not have any

errors, it will not be included in the array. Zend_Form::getMessages() returns an

associative array of associative arrays; keys (element names) point to an associative array of

code/message pairs.

if ($form->isValid($_POST)) {
 // success!
} else {
 // failure!
}

$values = $form->getValues();

$unfiltered = $form->getUnfilteredValues();

FORMS – FILTERS (also see the “Filtering and Validation” section of this guide)

It is often useful and/or necessary to perform some kind of normalization on input prior to

validation – for instance, to strip out all the HTML for security, but then run your validations on

what remains to ensure the submission is valid; or, to trim empty space surrounding input so

that a StringLength validator will not return a false positive.

These operations may be performed using Zend_Filter; Zend_Form_Element has

support for filter chains, allowing you to specify multiple, sequential filters to utilize. Filtering

happens both during validation and when you retrieve the element value via getValue().

Recall for unfiltered values to use: $unfiltered = $form->getUnfilteredValues();

Filters can be added to the chain in two ways:

 passing in a concrete filter instance

 providing a filter name – either a short name or a fully qualified class name

Short names are typically the filter name minus the prefix. In the default case, this will mean

minus the 'Zend_Filter_' prefix. Additionally, the first letter need not be in upper-case.

Custom Filter Classes

Use addPrefixPath() with Zend_Form_Element to utilize custom filter classes. Example:

<? php

$filtered = $element->getValue();

<?php

// Concrete filter instance:

$element->addFilter(new Zend_Filter_Alnum());

// Fully qualified class name:

$element->addFilter('Zend_Filter_Alnum');

// Short filter name:

$element->addFilter('Alnum');

$element->addFilter('alnum');

<?php

$element->addPrefixPath('My_Filter', 'My/Filter/', 'filter');

FORMS – VALIDATORS (also see the “Filtering and Validation” section of this guide)

Validators examine input against a set of requirements and produce a boolean result (True or

False) as to whether the input passed. The process can also provide further information about

which requirement(s) the input either met or failed. This is especially important in a security

context (“filter input, escape output”).

In Zend_Form, each element includes its own validator chain, consisting of
Zend_Validate_* validators.

Validators may be added to the chain in two ways:

 passing in a concrete validator instance

 providing a validator name – either a short name or a fully qualified class name

Short names are typically the validator name minus the prefix. In the default case, this will

mean minus the 'Zend_Validate_' prefix. The first letter need not be in upper-case.

Custom Validator Classes

Use addPrefixPath() with Zend_Form_Element to utilize custom validator classes:

Recall that the third argument indicates the plugin loader on which to perform the action. If a

particular validation failure should prevent later validators from firing, then pass the boolean

TRUE as the second parameter: $element->addValidator('alnum', true);

// Concrete validator instance:
$element->addValidator(new Zend_Validate_Alnum());

// Fully qualified class name:
$element->addValidator('Zend_Validate_Alnum');

// Short validator name:
$element->addValidator('Alnum');
$element->addValidator('alnum');

$element->addPrefixPath('My_Validator, 'My/Validator/',

 'Validator');

FORMS - VALIDATION

Custom Validator Messages

Some developers may wish to provide custom error messages for a validator. The

Zend_Form_Element::addValidator()$options argument allows you to do so by

providing the key 'messages' and setting it to an array of key/value pairs for the message

templates. You will need to know the error codes of the various validation error types for the

particular validator.

A better option is to use a Zend_Translate_Adapter with your form. Error codes are

automatically passed to the adapter by the default errors decorator - you can then specify

your own error message strings by setting up translations for the various error codes of your

validators.

You can also set multiple validators at once, using addValidators(). The basic way to

utilize this method is to pass an array of arrays, with each array containing 1 to 3 values, that

matches the addValidator()constructor.

Alternatively, you can use the array keys 'validator', 'breakChainOnFailure', and

'options':

Note the use of 'breakChainOnFailure' in the second argument. When set to 'TRUE', any

later validations in the chain are skipped.

$element->addValidators(array(
 array('NotEmpty', true),
 array('alnum'),
 array('stringLength', false, array(6, 20)),
));

$element->addValidators(array(
 array(
 'validator' => 'NotEmpty',
 'breakChainOnFailure' => true),
 array('validator' => 'alnum'),
 array(
 'validator' => 'stringLength',
 'options' => array(6, 20)),
));

FORMS - VALIDATION

Configure Validators

The previous example provided in the Custom Validator Error Messages section provides the

scenario for showing how to configure validators in a config file:

Note that every item has a key, whether or not it needs one. This is a limitation of using

configuration files, but it helps to clarify the purpose of each argument. Remember that any

validator options must be specified in the correct order.

To validate an element, pass the value to isValid():

Recall: Zend_Form_Element::isValid() filters values through the provided filter chain

prior to validation. It can take an optional second argument, $context. Usually, Zend_Form

passes in the entire array of values being validated, which allows you to write validators that

compare a value against other submitted values.

element.validators.notempty.validator = "NotEmpty"

element.validators.notempty.breakChainOnFailure = true

element.validators.alnum.validator = "Alnum"

element.validators.strlen.validator = "StringLength"

element.validators.strlen.options.min = 6

element.validators.strlen.options.max = 20

if ($element->isValid($value)) {

 // valid

} else {

 // invalid

}

FORMS - VALIDATION

Zend_Form Elements as General-Purpose Validators

Zend_Form_Element implements Zend_Validate_Interface, illustrating how an

element may also be used as a validator in other, non-form related validation chains. Methods

include:

 setRequired($flag) and isRequired()

allow you to set and retrieve the status of the 'required' flag. When set to boolean
true, this flag requires that the element be in the data processed by Zend_Form.

 setAllowEmpty() and getAllowEmpty()

allow you to modify the behavior of optional elements (i.e., elements where the
required flag is false). When the 'allow empty' flag is true, empty values will not be
passed to the validator chain.

 setAutoInsertNotEmptyValidator($flag)

allows you to specify whether or not a 'NotEmpty' validator will be prepended to
the validator chain when the element is required. By default, this flag is true.

 addValidator($nameOrValidator, $breakChainOnFailure = false,

array $options = null)

 addValidators(array $validators)

 setValidators(array $validators)

overwrites all validators

 getValidator($name)

retrieves a validator object by name

 getValidators()

retrieves all validators

 removeValidator($name)

removes validator by name

 clearValidators()

removes all validators

ZEND_FORM

Plugin Loaders

Zend_Form_Element makes use of Zend_Loader_PluginLoader to specify the locations

of alternate validators, filters, and decorators. Each has its own plugin loader associated with

it, and general accessors are used to retrieve and modify each. The following loader types are

used with the various plugin loader methods (the type names are case insensitive):

 validate filter decorator

The methods used to interact with plugin loaders are as follows:

 setPluginLoader($loader, $type):

$loader is the plugin loader object itself, while $type is one of the types. This sets
the plugin loader for the given type to the newly specified loader object.

 getPluginLoader($type):

retrieves the plugin loader associated with $type.

 addPrefixPath($prefix, $path, $type = null):

adds a prefix/path association to the loader specified by $type. If $type is null, it will
attempt to add the path to all loaders, by appending the prefix with each of
"_Validate", "_Filter", and "_Decorator"; and appending the path with
"Validate/", "Filter/", and "Decorator/". Having all the extra form element
classes under a common hierarchy is a convenient method for setting the base prefix
for them.

 addPrefixPaths(array $spec):

allows the addition of many paths at once to one or more plugin loaders. It expects
each array item to be an array with the keys 'path', 'prefix', and 'type'.

Custom validators, filters, and decorators are an easy way to share functionality among forms

and encapsulate custom functionality. The online Reference Guide provides an extensive

example for creating a custom decorator.

ZEND_FORM

Decorators

Zend_Form_Element uses "decorators", which are simply classes that have access to both

the element and a method for rendering content. These decorators can replace content,

append content, or prepend content, and have full introspection to the element passed to

them. As a result, multiple decorators can be combined to achieve custom effects. By default,

Zend_Form_Element actually combines four decorators to achieve its output. Example:

 ViewHelper: specifies a view helper to use for rendering the element. The 'helper'

element attribute can be used to specify which view helper to use. By default,

Zend_Form_Element specifies the 'formText' view helper, but individual

subclasses specify different helpers.

 Errors: appends error messages to the element using

Zend_View_Helper_FormErrors. If no errors are present, nothing is appended.

 HtmlTag: wraps the element and errors in an HTML <dd> tag.

 Label: prepends a label to the element using Zend_View_Helper_FormLabel, and

wraps it in a <dt> tag. If no label is provided, just the definition term tag is rendered.

By default, the default decorators are loaded during object initialization. You can disable this

by passing the 'disableLoadDefaultDecorators' option to the constructor:

This option may be mixed with any other options you pass, both as array options or in a

Zend_Config object. The initial content is created by the 'ViewHelper' decorator, which

creates the form element itself. Next, the 'Errors' decorator fetches error messages from

the element, and, if any are present, passes them to the 'FormErrors' view helper to

render. The next decorator, 'HtmlTag', wraps the element and errors in an HTML <dd> tag.

Finally, the last decorator, 'label', retrieves the element's label and passes it to the

'FormLabel' view helper, wrapping it in an HTML <dt> tag; the value is prepended to the

content by default.

<?php

$element = new Zend_Form_Element(

 'foo',

 array('disableLoadDefaultDecorators' => true)

);

ZEND_FORM

Multiple Decorators

Zend_Form_Element uses a decorator's class as the lookup mechanism when retrieving

decorators. As a result, you cannot register multiple decorators of the same type; subsequent

decorators will simply overwrite those that existed before. To get around this, you can use

aliases. Instead of passing a decorator or decorator name as the first argument to

addDecorator(), pass an array with a single element, with the alias pointing to the

decorator object or name:

In the addDecorators() and setDecorators() methods, you can either pass the

'decorator' option in the array representing the decorator, or pass it as the first element in the

decorator portion of the array:

<?php
// Alias to 'FooBar':
$element->
 addDecorator(
 array('FooBar' => 'HtmlTag'),
 array('tag' => 'div')
);

// And retrieve later:
$decorator = $element->getDecorator('FooBar');

<?php

// Add two 'HtmlTag' decorators, aliasing one to 'FooBar':

$element->addDecorators(

 array(

 array('HtmlTag', array('tag' => 'div')),

 array(

 'decorator' => array('FooBar' => 'HtmlTag'),

 'options' => array('tag' => 'dd')

)

)

);

// And retrieve later:

$htmlTag = $element->getDecorator('HtmlTag');

$fooBar = $element->getDecorator('FooBar');

ZEND_FORM

Configuration

The Zend_Form_Element constructor accepts either an array of options or a

Zend_Config object containing options, and it can also be configured using either

setOptions() or setConfig(). Generally speaking, keys are named as follows:

 If the 'set' + key refers to a Zend_Form_Element method, then the value provided will

be passed to that method.

 Otherwise, the value will be used to set an attribute

 The first letter of a config key can be either lower or upper case, but the remainder of

the key should follow the same case as the accessor method

 Exceptions to the rule include:

 prefixPath will be passed to addPrefixPaths()

 The following setters cannot be set in this way:

o setAttrib (although setAttribs will work)

o setConfig

o setOptions

o setPluginLoader

o setTranslator

o setView

Display Groups

Display groups are a way to create virtual groupings of elements for display purposes. All

elements remain accessible by name in the form, but when iterating over the form or

rendering, any elements in a display group are rendered together. The most common use case

for this is for grouping elements in fieldsets.

The base class for display groups is Zend_Form_DisplayGroup. While it can be instantiated

directly, it is typically best to use the Zend_Form addDisplayGroup() method to do so. This

method takes an array of elements as its first argument, and a name for the display group as

its second argument. You may optionally pass in an array of options or a Zend_Config

object as the third argument. Assuming that the elements 'username' and 'password' are

already set in the form, this code would group these elements in a 'login' display group:

$form->addDisplayGroup(array('username', 'password'), 'login');

ZEND_FORM

Sub Forms

Sub forms serve several purposes:

 Creating logical element groups. Since sub forms are simply forms, you can validate
subforms as individual entities.

 Creating multi-page forms. Since sub forms are simply forms, you can display a
separate sub form per page, building up multi-page forms where each form has its
own validation logic. Only once all sub forms validate would the form be considered
complete.

 Display groupings. Like display groups, sub forms, when rendered as part of a larger
form, can be used to group elements. Be aware, however, that the master form object
will have no awareness of the elements in sub forms.

You can retrieve a sub form using either getSubForm($name) or overloading using the sub
form name.

<?php

$form->addSubForm($subForm, 'subform');

<?php

// Using getSubForm():

$subForm = $form->getSubForm('subform');

// Using overloading:

$subForm = $form->subform;

ZEND_FORM

Internationalization of Forms

By default, no internationalization (I18n) is performed. To turn on I18n features in
Zend_Form, you will need to instantiate a Zend_Translate object with an appropriate
adapter, and attach it to Zend_Form and/or Zend_Validate.

Add to the Registry - this will be picked up by Zend_Form, Zend_Validate, and
Zend_View_Helper_Translate.

Error Messages: register the translation object with Zend_Validate_Abstract

or attach to the Zend_Form object as a global translator. This has the side effect of also
translating validation error messages.

Permissible Translation Targets:

 Validation error messages. Use the various error code constants from Zend_Validate
validation classes as the message IDs.

 Labels. Element labels will be translated, if a translation exists.

 Fieldset Legends. Display groups and sub forms rendered in fieldsets by default. The
Fieldset decorator attempts to translate the legend before rendering the fieldset.

 Form and Element Descriptions. All form types (element, form, display group, sub form)
allow specifying an optional item description - the Description decorator can render this,
and by default will take the value and attempt to translate it.

 Multi-option Values. For items inheriting from Zend_Form_Element_Multi
(MultiCheckbox, Multiselect, Radio elements), the option values (not keys) will be
translated if one is available; option labels presented to the user will be translated.

 Submit and Button Labels. The various Submit and Button elements (Button, Submit, and
Reset) will translate the label displayed to the user.

<?php
// use the 'Zend_Translate' key; $translate is a
// Zend_Translate object:
Zend_Registry::set('Zend_Translate', $translate);

<?php
//Tell all validation classes to use a specific translate adapter
Zend_Validate_Abstract::setDefaultTranslator($translate);

<?php
//Tell all form classes to use a specific translate adapter, as
//well as use this adapter to translate validation error messages
Zend_Form::setDefaultTranslator($translate);

TEST YOUR KNOWLEDGE : QUESTIONS

S A M P L E E X A M

Q U E S T I O N S

Validators used with Zend_Form should implement which

component?

a. Zend_Form_Validator_Abstract

b. Zend_Validate_Abstract

c. Zend_Validate_Interface

d. Zend_Form_Validate_Interface

Which of the following is NOT a valid mechanism for adding a

decorator to an element?

a. <code>
$element->addDecorator(new
Zend_Form_Decorator_ViewHelper());
</code>

b. <code>
$element->attachDecorator('ViewHelper');
</code>

c. <code>
$element->addDecorator('ViewHelper');
</code>

d. <code>
$element->addDecorator('ViewHelper',

 array('helper' => 'foo'));
</code>

TEST YOUR KNOWLEDGE : ANSWERS = CORRECT

Validators used with Zend_Form should implement which class?

a. Zend_Form_Validator_Abstract

b. Zend_Validate_Abstract

c. Zend_Validate_Interface

d. Zend_Form_Validate_Interface

Which of the following is NOT a valid mechanism for adding a

decorator to an element?

a. <code>
$element->addDecorator(new
Zend_Form_Decorator_ViewHelper());
</code>

b. <code>

$element->attachDecorator('ViewHelper');
</code>

c. <code>

$element->addDecorator('ViewHelper');
</code>

d. <code>

$element->addDecorator('ViewHelper',
 array('helper' => 'foo'));

</code>

Zend_Config

Use / Purpose Multiple Environs .ini Files

Bootstrap File

Zend_Exception

Use / Purpose Catching Exception

Definitions Use / Purpose Validator Classes

Zend_Registry

Config Objects

Detection

Zend_Version

CERTIFICATION TOPIC : INFRASTRUCTURE

I N F R A S T R U C T U R E

S N A P S H O T

Zend_Loader

Use / Purpose Autoloading Conventions
Cl

Plugins

Zend_Session

Definitions Use / Purpose Bootstrap

Zend Framework: Infrastructure

For the exam, here’s what you should know already …

CONFIGURATION
You should be able to explain the purpose of configuration for single and multiple
environments within an MVC-based application.

You should be able to define a configuration object using an ini file, and then interact with
and utilize that configuration object; you should know how to set up an application bootstrap
file to utilize a configuration file.

EXCEPTIONS
You should know the purpose of framework-specific exceptions and what they represent; you
should also be able to create code that catches exceptions thrown by any ZF component.

REGISTRY
You should know the purpose of having a registry within an object-oriented based
application.

You should be able to assign application-wide objects to the global registry, as well as know
when and how to create an alternative to the global registry.

LOADER
You should know when to use, and when not to use, Zend_Loader within an application
and libraries, know how to utilize the autoload feature, know how Zend_Loader maps class
names to files.

You should be able to explain the purpose of Zend_Loader_PluginLoader as well as
utilize it within an application.

SESSION
You should understand the features and benefits that Zend_Session provides, how to set
an application bootstrap file to use Zend_Session, and how to persist data between
requests.

I N F R A S T R U C T U R E

F O C U S

 ZEND_CONFIG

Zend_Config is designed to simplify access to, and use of, configuration data within

applications. It provides a nested object property-based user interface for accessing

configuration data within application code.

The configuration data may come from a variety of media-supporting hierarchical data

storage. Currently Zend_Config provides adapters for configuration data that are stored in

text files with Zend_Config_Ini and Zend_Config_Xml (two most commonly used).

Configuration Data in PHP Array

If the config data is available in a PHP array, simply pass the data to the Zend_Config

constructor to utilize a simple, object-oriented interface. Zend_Config also has get(),

which will return the supplied default value if the data element doesn’t exist.

<?php
// Given an array of configuration data
$configArray = array(
 'webhost' => 'www.example.com',
 'database' => array(
 'adapter' => 'pdo_mysql',
 'params' => array(
 'host' => 'db.example.com',
 'username' => 'dbuser',
 'password' => 'secret',
 'dbname' => 'mydatabase'
)
)
);

// Create the object-oriented wrapper upon the configuration data
require_once 'Zend/Config.php';
$config = new Zend_Config($configArray);

// Print a configuration datum (results in 'www.example.com')
echo $config->webhost;

// Use the configuration data to connect to the database
$db = Zend_Db::factory($config->database->adapter,
 $config->database->params->toArray());

// Alternative usage: simply pass the Zend_Config object.
// The Zend_Db factory knows how to interpret it.
$db = Zend_Db::factory($config->database);

ZEND_CONFIG

Using Zend_Config with a PHP Configuration File:
It is often desirable to use a purely PHP-based configuration file. Example:

How Configuration Works:
Configuration data are made accessible to the Zend_Config constructor through an

associative array, which may be multidimensional, in order to support organizing the data

from general to specific. Concrete adapter classes are used in the process. User scripts may

provide such arrays directly to the Zend_Config constructor, without using an adapter

class, whenever it is more appropriate to do so.

<?php
// config.php
return array(
 'webhost' => 'www.example.com',
 'database' => array(
 'adapter' => 'pdo_mysql',
 'params' => array(
 'host' => 'db.example.com',
 'username' => 'dbuser',
 'password' => 'secret',
 'dbname' => 'mydatabase'

)

<?php
// Configuration consumption
require_once 'Zend/Config.php';
$config = new Zend_Config(require 'config.php');

// Print a configuration datum (results in 'www.example.com')
echo $config->webhost;

ZEND_CONFIG

How Configuration Works (continued)
Each configuration data array value becomes a property of the Zend_Config object, with

the key used as the property name. If a value is itself an array, then the resulting object

property created is a new Zend_Config object, loaded with the array data. This occurs

recursively, such that a hierarchy of configuration data may be created with any number of

levels.

Zend_Config implements the Countable and Iterator interfaces in order to facilitate simple

access to configuration data, allowing the use of the count() function and PHP constructs

such as foreach upon Zend_Config objects.

Adapter classes inherit from the Zend_Config class since they utilize its functionality.

The Zend_Config family of classes enables configuration data to be organized into sections.

Zend_Config adapter objects may be loaded with a single specified section, multiple

specified sections, or all sections (if none are specified).

Zend_Config adapter classes support a single inheritance model that enables configuration

data to be inherited from one section of configuration data into another, reducing or

eliminating the need for duplicating configuration data for different purposes. An inheriting

section can also override the values that it inherits through its parent section.

Two Zend_Config objects can be merged into a single object using the merge() function.

ZEND_CONFIG

Zend_Config_Ini

Zend_Config_Ini enables developers to store configuration data in a familiar INI format

and read them in the application using nested object property syntax. The INI format is

specialized to provide both the ability to have a hierarchy of configuration data keys and

inheritance between configuration data sections.

Configuration data hierarchies are supported by separating the keys with a period character (.)

A section may extend or inherit from another section by following the section name with a

colon character (:) and the name of the section from which to inherit the data.

The configuration data may represent multiple environments (Ex: production and staging).

The developer would simply specify which environment to engage by specifying the INI file

and the specified environment’s section (path). In this example, the configuration data for the

staging environment is being used. Given that the configuration data is contained in

/path/to/config.ini :

 <?php
$config = new Zend_Config_Ini('/path/to/config.ini', 'staging');

echo $config->database->params->host; // prints "dev.example.com"
echo $config->database->params->dbname; // prints "dbname"

; Production site configuration data
[production]
webhost = www.example.com
database.adapter = pdo_mysql
database.params.host = db.example.com
database.params.username = dbuser
database.params.password = secret
database.params.dbname = dbname

; Staging site configuration data inherits from production and
; overrides values as necessary
[staging : production]
database.params.host = dev.example.com
database.params.username = devuser
database.params.password = devsecret

ZEND_CONFIG

 Zend_Config_Xml

Zend_Config_Xml enables developers to store configuration data in a simple XML format

and read them via nested object property syntax. Configuration data read into
Zend_Config_Xml are always returned as strings.

The root element of the XML file is irrelevant and the first level corresponds with configuration

data sections. The XML format supports hierarchical organization through nesting of XML

elements below the section-level elements. The content of a leaf-level XML element

corresponds to the value of a configuration datum. Section inheritance is supported by a

special XML attribute named extends, and the value of this attribute corresponds with the

section from which data are to be inherited by the extending section.

Example: using Zend_Config_Xml for loading configuration data from an XML file
with multiple environments (staging and production). Given that the configuration
data is contained in /path/to/config.xml, and the application needs the staging
configuration data:

<?xml version="1.0"?>
<configdata>
 <production>
 <webhost>www.example.com</webhost>
 <database>
 <adapter>pdo_mysql</adapter>
 <params>
 <host>db.example.com</host>
 <username>dbuser</username>
 <password>secret</password>
 <dbname>dbname</dbname>
 </params>
 </database>
 </production>
 <staging extends="production">
 <database>
 <params>
 <host>dev.example.com</host>
 <username>devuser</username>
 <password>devsecret</password>
 </params>
 </database>
 </staging>
</configdata>

$config = new Zend_Config_Xml('/path/to/config.xml', 'staging');

echo $config->database->params->host; // prints "dev.example.com"
echo $config->database->params->dbname; // prints "dbname"

ZEND_EXCEPTION

All exceptions thrown by Zend Framework classes should derive from the base class

Zend_Exception.

Catching Exceptions

The following example illustrates code for catching exceptions within a ZF application:

ZEND_VERSION

Reading the Zend Framework Version

The class constant Zend_Version::VERSION contains a string that identifies the current

version number of Zend Framework.

The static method Zend_Version::compareVersion($version)is based on the PHP
function version_compare(). The method returns “-1” if the specified $version is
older than the Zend Framework version, “0” if they are the same, and “+1” if the specified
$version is newer than the Zend Framework version.

<?php

try {
 Zend_Loader::loadClass('nonexistantclass');
} catch (Zend_Exception $e) {
 echo "Caught exception: " . get_class($e) . "\n";
 echo "Message: " . $e->getMessage() . "\n";
 // other code to recover from the failure.
}

<?php
// returns -1, 0 or 1
$cmp = Zend_Version::compareVersion('1.0.0');

ZEND_REGISTRY

The registry is a container for storing objects and values in the application space. By
storing the value in the registry, the same object is always available throughout your
application. This mechanism is an alternative to using global storage.

The typical usage of the registry is through static methods in the Zend_Registry
class. Alternatively, the class is an array object, so you can access elements stored
within it with a convenient array-like interface

Constructing a Registry Object

In addition to accessing the static registry through static methods, you can create an
instance directly and use it as an object. The registry instance you access through the
static methods is simply one such instance, and it is for convenience that it is stored
statically, so you can access it from anywhere in your application.

Use a traditional new constructor to create an instance of the registry. This gives you
the opportunity to initialize the entries in the registry as an associative array.

Example: Constructing a Registry

After constructing this instance, you can use it using array-object methods, or you can
set this instance to become the static instance using setInstance().

Example: Initializing the Static Registry

The setInstance() method throws a Zend_Exception if the static registry has
already been initialized by its first access.

Example: Catching an Exception

<?php
$registry = new Zend_Registry(array('index' => $value));

<?php
$registry = new Zend_Registry(array('index' => $value));

Zend_Registry::setInstance($registry);

<?php
try {
 Zend_Loader::loadClass('nonexistantclass');
} catch (Zend_Exception $e) {
 echo "Caught exception: " . get_class($e) . "\n";
 echo "Message: " . $e->getMessage() . "\n";
 // other code to recover from the failure.
}

ZEND_LOADER

The Zend_Loader class includes methods to help you load files dynamically.

Loading Files

The static method Zend_Loader::loadFile() loads a PHP file, which may contain any

PHP code. The method is a wrapper for the PHP function include()and throws

Zend_Exception on failure.

The $filename argument specifies the filename to load – it can only contain alphanumeric

characters, hyphens ("-"), underscores ("_"), or periods ("."), and must not contain any path

information. A security check is run on this.

No similar restrictions are placed on the $dirs argument, which specifies the directories to

search for the file. If it returns NULL, only the include_path is searched. If it returns a string

or array, the directory or directories specified will be searched, and then the include_path.

The $once argument is a boolean. If TRUE, Zend_Loader::loadFile() uses the PHP

function include_once() for loading the file, otherwise the PHP function include() is

used.

 Loading Classes

The static method Zend_Loader::loadClass($class, $dirs) loads a PHP file and

then checks for the existence of the class. The string specifying the class is converted to a

relative path by substituting directory separates for underscores, and appending '.php'. Ex:

'Container_Tree' would become 'Container/Tree.php'.

If $dirs is a string or an array, Zend_Loader::loadClass() searches the directories in
the order supplied, loading the first matching file. If the file does not exist in the specified
$dirs, then the include_path is searched. If the file is not found or the class does not exist
after the load, a Zend_Exception is thrown.

When Zend_Loader::loadClass() is used, the class name can contain only

alphanumeric characters and hyphens ("-"), underscores ("_"), or periods (".")

<?php
Zend_Loader::loadClass('Container_Tree',
 array(
 '/home/production/mylib',
 '/home/production/myapp'
)
);

ZEND_LOADER

Plugin Loader

A number of Zend Framework components are ‘pluggable’, and allow loading of dynamic

functionality by specifying a class prefix and path to class files that are not necessarily on the

include_path, or do not necessarily follow traditional naming conventions.

Zend_Loader_PluginLoader provides common functionality for this.

The basic usage of the PluginLoader follows Zend Framework naming conventions - one

class per file, using the underscore as a directory separator when resolving paths. It allows

passing an optional class prefix to prepend when determining if a particular plugin class is

loaded, and paths are searched in LIFO order (“Last In, First Out”). This allows for namespacing

plugins, and thus overriding plugins from paths registered earlier.

Zend_Loader_PluginLoader also optionally allows plugins to be shared across plugin-

aware objects, without needing to utilize a singleton instance, via a static registry. Simply

indicate the registry name at instantiation as the second parameter to the constructor. Other

components that instantiate the PluginLoader using the same registry name will then have

access to already loaded paths and plugins.

Example: given the following directory structure, the sample code follows:

<?php
$loader = new Zend_Loader_PluginLoader();
$loader->addPrefixPath('Zend_View_Helper', 'Zend/View/Helper/')
 ->addPrefixPath('Foo_View_Helper',
 'application/modules/foo/views/helpers')
 ->addPrefixPath('Bar_View_Helper',
 'application/modules/bar/views/helpers');

application/
 modules/
 foo/
 views/
 helpers/
 FormLabel.php
 FormSubmit.php
 bar/
 views/
 helpers/
 FormSubmit.php
library/
 Zend/
 View/
 Helper/
 FormLabel.php
 FormSubmit.php
 FormText.php

ZEND_SESSION

For PHP applications, a session represents a logical, one-to-one connection between server-

side, persistent state data and a particular user agent client (e.g., a web browser).

Zend_Session helps manage and preserve session data, a logical complement of cookie

data, across multiple page requests by the same client.

Session Data

Unlike cookie data, session data are not stored on the client side and are only shared with the

client when server-side source code voluntarily makes the data available in response to a

client request. (Here, the term "session data" refers to the server-side data stored in

$_SESSION, managed by Zend_Session, and individually manipulated by

Zend_Session_Namespace accessor objects.)

Zend_Session_Namespace

Session namespaces provide access to session data using classic namespaces implemented

logically as named groups of associative arrays, keyed by strings (similar to normal PHP arrays).

Zend_Session_Namespace instances are accessor objects for namespaced slices of

$_SESSION. The Zend_Session component wraps the existing PHP ext/session with an

administration and management interface, as well as providing an API for

Zend_Session_Namespace to persist session namespaces. Zend_Session_Namespace

provides a standardized, object-oriented interface for working with namespaces persisted

inside PHP's standard session mechanism.

Support exists for both anonymous and authenticated (e.g., "login") session namespaces.

Zend_Auth, the authentication component of ZF, uses Zend_Session_Namespace to store

some information associated with authenticated users.

Since Zend_Session uses the normal PHP extension/session functions internally, all the

familiar configuration options and settings apply, with the convenience of an object-oriented

interface and default behavior that provides both best practices and smooth integration with

the Zend Framework. Thus, a standard PHP session identifier, whether conveyed by cookie or

within URLs, maintains the association between a client and session state data.

Operation

When the first session namespace is requested, Zend_Session will automatically start the

PHP session, unless already started with Zend_Session::start(). The PHP session will

use defaults from Zend_Session, unless modified by Zend_Session::setOptions().

ZEND_SESSION

Operation (continued)

To set a session configuration option, include the basename as a key of an array passed to

Zend_Session::setOptions(). The corresponding value in the array is used to set the

session option value. If no options are set, Zend_Session will utilize recommended default

options first, then default php.ini settings.

Bootstrap File

If you want all requests to have a session facilitated by Zend_Session, then start the session

in the bootstrap file. This also prevents the session from starting after headers have been sent

to the browser, which results in an exception, and possibly a broken page for website viewers.

Example: Starting the Global Session

For more information about the right, and wrong, way to start a session, see the Programmers

Guide.

Persist Data and Objects

Limits can be placed on the longevity of both namespaces and individual keys in namespaces.

Expiration can be based on either elapsed seconds or the number of "hops", where a hop

occurs for each successive request that instantiates the namespace at least once. When

working with data expiring from the session in the current request, care should be used when

retrieving them. Although the data is returned by reference, modifying the data will not make

expiring data persist past the current request. In order to "reset" the expiration time, fetch the

data into temporary variables, use the namespace to unset them, and then set the appropriate

keys again.

Objects persisted in the PHP session are serialized for storage, and so must be unserialized

upon retrieval – but – it is important to realize that the classes for the persisted objects must

have been defined before the object is unserialized. If objects are unserialized to an unknown

class, they become __PHP_Incomplete_Class_Name objects.

<?php
require_once 'Zend/Session.php';

Zend_Session::start();

TEST YOUR KNOWLEDGE : QUESTIONS

Given $tree = new Tree(array('type' => 'cedar')); , and you

wish to persist this object via Zend_Session, which call

will put this object in the default namespace?

a. Zend_Session_Namespace::set('tree', $tree);

b. $sess = new Zend_Session_Namespace();

$sess->tree = $tree;

c. $sess = new Zend_Session();
$sess->tree = $tree;

d. $sess = Zend_Session::getInstance()

$sess->set('tree', $tree);

Zend_Config allows hierarchical and sectioned key-value
pairs to exist in a single file.

a. True

b. False

S A M P L E E X A M

Q U E S T I O N S

TEST YOUR KNOWLEDGE : ANSWERS = CORRECT

Given $tree = new Tree(array('type' => 'cedar')); , and you

wish to persist this object via Zend_Session, which call

will put this object in the default namespace?

a. Zend_Session_Namespace::set('tree', $tree);

b. $sess = new Zend_Session_Namespace();

 $sess->tree = $tree;

c. $sess = new Zend_Session();
 $sess->tree = $tree;

d. $sess = Zend_Session::getInstance()
 $sess->set('tree', $tree);

Zend_Config allows hierarchical and sectioned key-value
pairs to exist in a single file.

a. True

b. False

Zend_Locale

Definitions Use / Purpose Downgrading

Awareness UTF-8 Caching

Translation Data Single/List Datas

Zend_Translate

Adapter Sources Directory

Options Scanning Translation

Language Cache Check

CERTIFICATION TOPIC : INTERNATIONALIZATION

I N T E R N A T I O N A L

S N A P S H O T

Zend_Currency

Creation Output

Zend_View_Helper_Trans

Adapter Set Parameters

Zend_Date

Definitions Options Formats

Timezone API Localization

Fluidity Standalone

 Zend Framework: Internationalization

For the exam, here’s what you should know already …

You should be able to demonstrate a thorough knowledge of locales – what they are, where

they are stored, how to create one, downgrading & checking, etc.

In addition, you should know how the translation process works, how to select and use

adapters, access different sources, change languages, etc.

Also, you should be able to work with both dates and with currency, and their corresponding

options and functions.

I N T E R N A T I O N A L

F O C U S

 ZEND_LOCALE

Internationalization of a web site requires two basic processes: Localization (L10N) and

Internationalization (I18N). Many considerations go into adjusting web sites for regions, as

revealed by the various needed ZF components. For more detail, see the Programmers Guide.

Localization:

Within Zend Framework, the following components are used in the localization process – the

component name reveals its role in most cases:

 Zend_Locale

 Zend_Translate

 Zend_Date includes date and time

 Zend_Currency

 Zend_Locale_Format

 Zend_Locale_Data

Zend Locale

A locale string or object provides Zend_Locale and its subclasses access to information

about the language and region expected by the user. Correct formatting, normalization, and

conversions are made based on this information. Locale identifier strings used in Zend

Framework are internationally defined standard abbreviations of language and region, written

as language_REGION. Both parts are abbreviated as alphabetic, ASCII characters.

Zend_Locale, unlike PHP’s setlocale(), is thread-safe.

Generally, new Zend_Locale() will automatically select the correct locale, with preference

given to information provided by the user's web browser. If

Zend_Locale(Zend_Locale::ENVIRONMENT) is used, then preference will be given to the

host server's environment configuration, as shown below.

<?php

require_once 'Zend/Locale.php';

$locale = new Zend_Locale();

$locale1 = new Zend_Locale(Zend_Locale::BROWSER);

// default behavior, same as above

$locale2 = new Zend_Locale(Zend_Locale::ENVIRONMENT);

// prefer settings on host server

$locale3 = new Zend_Locale(Zend_Locale::FRAMEWORK);

// prefer framework app default settings

ZEND_LOCALE

 Automatic Locales

Zend_Locale provides three "automatic" locales that do not belong to any language or

region. They have the same effect as the method getDefault() but without the negative

consequences, like creating an instance. These locales can be used anywhere, including with

standard locales, with their definition, and with their string representation. These automatic

locales offer an easy solution to a variety of situations, as when locales are provided within a

browser. Three locales have a slightly different behavior:

'browser'

Zend_Locale should work with the information provided by the user's Web browser. It is

published by PHP in the global variable HTTP_ACCEPT_LANGUAGE. If a user provides more

than one locale within the browser, Zend_Locale will use the highest quality locale. If the

user provides no locale in the browser, or the script is being called from the command line, the

automatic locale 'environment' will be used and returned.

'environment'

Zend_Locale works with the information provided by the host server, and is published by

PHP via the internal function setlocale(). If a environment provides more than one locale,

Zend_Locale will use the first locale encountered. If the host does not provide a locale, the

automatic locale 'browser' will be used and returned.

'auto'

Zend_Locale should automatically detect any locale which can be worked with. It will first

search for a user’s locale and then, if unsuccessful, search for the host locale. If no locale can be

detected, it will degrade to a "default" locale which is "en" when the user does not set it. This

setting can be overwritten. Options are to set a new locale manually, or define a default

location. Example: With, and Without, Auto-Detection

<?php

require_once 'Zend/Locale.php';

require_once 'Zend/Date.php';

// without automatic detection

// $locale = new Zend_Locale(Zend_Locale::BROWSER);

// $date = new Zend_Date($locale);

// with automatic detection

$date = new Zend_Date('auto');

ZEND_LOCALE

Performance Considerations

The performance of Zend_Locale and its subclasses can be boosted by the use of

Zend_Cache, specifically the static method Zend_Locale::setCache($cache).

Zend_Locale_Format can be sped up the using the option cache within

Zend_Locale_Format::setOptions(array('cache' => $adapter));.

If both classes are used, be sure to only set a cache for Zend_Locale; otherwise, the data

will be cached twice.

 Locale Objects – Copying, Cloning, Serializing

Zend_Locale provides localized information for each locale, including local names for days

of the week, months, etc. Use object cloning to duplicate a locale object exactly and

efficiently. Most locale-aware methods also accept string representations of locales, such as

the result of $locale->toString().

If you know many objects should all use the same default locale, explicitly specify the default

locale to avoid the overhead of each object determining the default locale.

<?php

require_once 'Zend/Locale.php';

$locale = new Zend_Locale('ar');

// Save the $locale object as a serialization

$serializedLocale = $locale->serialize();

// re-create the original object

$localeObject = unserialize($serializedLocale);

// Obtain a string identification of the locale

$stringLocale = $locale->toString();

// Make a cloned copy of the $local object

$copiedLocale = clone $locale;

ZEND_LOCALE

Equality – Comparing Locales

Zend_Locale provides a function to compare two locales – all locale-aware classes should

provide a similar equality check.

Default Locales

getDefault()returns an array of relevant locales using information from the user's web

browser (if available), information from the environment of the host server, and ZF settings. As

with the constructor for Zend_Locale, the first parameter sets the preference for

consideration of information (BROWSER, ENVIRONMENT, or FRAMEWORK) . The second

parameter toggles between returning all matching locales or only the first/best match. Locale-

aware components normally use only the first locale. A quality rating is included, as available.

Use corresponding methods to obtain the default locales relevant only to the:

 BROWSER getBrowser()

 ENVIRONMENT getEnvironment()

<?php

require_once 'Zend/Locale.php';

$locale = new Zend_Locale();

// Return all default locales

$found = $locale->getDefault();

print_r($found);

// Return only browser locales

<?php

require_once 'Zend/Locale.php';

$locale = new Zend_Locale();

$mylocale = new Zend_Locale('en_US');

// Check if locales are equal

if ($locale->equals($mylocale)) {

ZEND_LOCALE

Set New Locales

A new locale can be set with the function setLocale(). This function takes a locale string as

a parameter. If no locale is given, one is automatically chosen. As Zend_Locale objects are

‘light’, this method exists primarily to cause side-effects for code that have references to the

existing instance object.

Obtaining the Language and Region

Use getLanguage() to obtain a string containing the language code from the string locale

identifier, as the method is able to properly interpret language and region codes. Use

getRegion() to obtain a string containing the two character region code from the string

locale identifier.

Obtaining Localized Strings

getTranslationList() provides convenient access to localized information of various

types, helping to display localized data to a customer without the need for translation. These

strings are available as part of Zend Framework. The requested data is always returned as an

array. Use an array, not multiple values, for giving more than one value to an explicit type.

Example: Some of the getTranslationList()Data Available (see Programmers Guide)

 Language Months Month

 Script Days Day

 Territory Week Quarters

 Variant Key Type

For a single translated value, use getTranslation($value=null, $type=null,

$locale=null) and specify which value to be returned. The Programmers Guide has the

complete list of parameters.

<?php

require_once 'Zend/Locale.php';

$locale = new Zend_Locale();

// Actual locale

print $locale->toString();

// new locale

$locale->setLocale('aa_DJ');

print $locale->toString();

ZEND_TRANSLATE

Zend_Translate is Zend Framework's solution for multilingual applications, where the content

must be translated into several languages and displayed depending on the user's language.

While PHP already offers ways to handle internationalization, they have their own issues:

inconsistent API, support only for native arrays or gettext (which is not thread-safe), no

detection of default language. Zend_Translate has none of these issues.

Establishing Multi-Lingual Sites

There are four basic steps in setting up a multi-lingual site:

 Decide which adapter to use

 Create the View and integrate Zend_Translate into the code

 Create the source file from the code

 Translate the source file to the desired language

Choose Adapter

Adapters for Zend Translate

Zend_Translate can handle different adapters for translation, each of which has its own

advantages and disadvantages.

 Array Tbx Xliff

 Csv Tmx XmlTm

 Gettext Qt Others

Deciding which adapter to use is often influenced by outside criteria, such as those of a

project or client – consult the online Reference Guide for a in-depth discussion of the good

and bad points of using each adapter.

Utilize Adapter Example: Multi-Lingual PHP Code (more examples in Reference Guide)

<?php
$translate = new Zend_Translate('gettext', '/my/path/source-
de.mo', 'de');
$translate->addTranslation('//my/path/fr-source.mo', 'fr');

print $translate->_("Example")."\n";
print "=======\n";
print $translate->_("Here is line one")."\n";
printf(
 $translate->_("Today is the %1\$s") . "\n", date("d.m.Y")
);
print "\n";

$translate->setLocale('fr');
print $translate->_("Fix language here is line two") . "\n";

usage here is line two\n";

ZEND_TRANSLATE

Performance Considerations

Using Zend_Cache internally with Zend_Translate accelerates the loading of translation

sources, useful for multiple sources or extensive source formats like XML-based files. Give a

cache object to the Zend_Translate::setCache() method, which takes a instance of

Zend_Cache as the only parameter. Direct use of an adapter allows for the use of the

setCache() method.

Translation Source Adapters

Zend_Translate offers flexibility when it comes to storage of the translation files. The

following structures are preferable, though:

 Single-structured Source: All source files in one directory

 Language-structured Source: One language per directory

 Application-structured Source: One dir; multiple-files per language

 Gettext-structured Source: Utilize old gettext sources within structure

 File-structured Source: Each file is related to its translation source

Using UTF-8 Source Encoding

To avoid the problems encountered when using two different source encodings, it is a best

practice to always use UTF-8 encoding. Otherwise, if multiple forms are used, it is highly

probable that one of the languages will not display correctly, as there can only be only one

encoding per source file. UTF-8 is a portable format which supports all languages.

<?php

require_once 'Zend/Translate.php';

require_once 'Zend/Cache.php';

$cache = Zend_Cache::factory('Page', 'File', $frontendOptions,

 $backendOptions);

Zend_Translate::setCache($cache);

$translate = new Zend_Translate('gettext',

 '/path/to/translate.mo', 'en');

ZEND_TRANSLATE

Adapter Options

All adapters support various options – these options are set when the adapter is created.

There is one option available to all adapters. 'clear' decides if translation data should be

added to existing content or not. The standard behavior is to add new translation data to

existing data. If the translation data is cleared, it is important to note that this step will apply

only to the selected language - all other languages will remain untouched.

ADAPTER OPTION STANDARD

VALUE

DESCRIPTION

all clear false if set to true, translations already read will

be cleared. This can be used instead of

creating a new instance when reading new

translation data

all scan null If set to null, no scanning of the directory

structure will be done.

If set to

Zend_Translate::LOCALE_DIRECTORY

the locale will be detected within the

directory.

If set to

Zend_Translate::LOCALE_FILENAME

the locale will be detected within the

filename.

Csv separator ; Defines which sign is used for separating

source and translation

Self-defined options can also be used with all adapters. Utilize the setOptions() method,

and provide an array with the desired options.

ZEND_TRANSLATE

Source Files

Creating CSV Source Files

CSV source files are small, readable files, easy to manage.

Creating Array Source Files

Array source files provide an easy form of adapter for the translation process, especially for

message feedback on whether the code is performing as expected.

Creating Gettext Source Files

Gettext source files are created by GNU's gettext library. There are several free tools available

that can parse code files and create the needed gettext source files. These binary files have the

ending *.mo.

Creating TMX Source Files

TMX source files are a new industry standard, with the advantage of being XML files – they are

readable by all editors and by people. TMX files can either be created manually with a text

editor, or via tools available on the market.

Source Auto-Detection:

Zend_Translate can detect translation sources automatically. It involves the same process

as initiating a single-translation source, only a directory is provided instead of a file.

ZEND_TRANSLATE

Handling Languages – Useful Methods

getLocale(): can be used to get the actual set language; it can either hold an

 instance of Zend_Locale or the identifier of a locale

setLocale(): sets a new standard language for translation. This prevents having to

 set the optional language parameter more than once to the

 translate()method. If the given language does not exist, or no

 translation data is available for the language, setLocale()tries to

 downgrade to the language without the region, if any was given.

 A language of en_US would be downgraded to en. If the

 downgraded language cannot be found, an exception is thrown

isAvailable(): checks if a given language is already available – returns TRUE if data

 for the given language exists.

 getList(): used to get all the set languages for an adapter returned as an array

...

// returns the actual set language

$actual = $translate->getLocale();

...

// you can use the optional parameter while translating

echo $translate->_("my_text", "fr");

// or set a new standard language

$translate->setLocale("fr");

echo $translate->_("my_text");

// refer to base language... fr_CH is downgraded to fr and used

$translate->setLocale("fr_CH");

echo $translate->_("my_text");

...

// check if this language exist

if ($translate->isAvailable("fr")) {

 // language exists

}

ZEND_TRANSLATE

Handling Languages – Auto-Detection

As long as new translation sources are added only with the addTranslation()method
then Zend_Translate will automatically set the language best-suited for the

environment.

Language through Named Directories

Automatic language detection can be invoked by naming the language source directories and

supplying the ‘scan’ option to Zend_Translate.(not for TMX source files)

Language through Filenames

Another way to detect the language automatically is to use special filenames, for either the

entire language file or parts of it. Again, it is required that the ‘scan’ option is set for
Zend_Translate. There are several ways of naming the source files - complete filename,

file extension, and filename tokens.

Checking for Translations

The isTranslated() method can be used to determine whether text within a source file

has been translated. isTranslated($messageId, $original = false,
$locale = null) takes as the first parameter the text in question; the optional second

parameter determines whether the translation is fixed to the declared language or a lower set

of translations can be used; the optional third parameter is the related locale. If you have text

which can be translated by 'en' but not for 'en_US' you will normally get the translation

returned, but by setting $original to TRUE, the isTranslated() method will return

FALSE.

Access to Source Data

Two functions can be used to access the translation source data:

 getMessageIds($locale = null), which returns all know messageIDs as an array,

 getMessages($locale = null), which returns the complete translation source as

 an array - the message ID is used as the key and the translation data as the value.

ZEND_DATE

The Zend_Date component offers a detailed but simple API for manipulating dates and times.

Its methods accept a wide variety of information types , including date parts.

Zend_Date also supports abbreviated names of months in many languages. Zend_Locale

facilitates the normalization of localized month and weekday names to timestamps, which

may, in turn, be shown localized to other regions.

Internals

 UNIX Timestamp

All dates and times are represented internally as absolute moments in time, as a UNIX

timestamp expressing the difference between the desired time and 1/1/1970, 00:00 GMT

 Date parts as timestamp offsets

An instance object representing three hours would be expressed as three hours after

1/1/1970, 00:00 GMT

 PHP Functions

Where possible, Zend_Date uses PHP functions to improve performance

Setting a Default Time zone

Before using any date-related functions in PHP or the Zend Framework, make certain the

application has a correct default time zone, either by setting the TZ environment variable with

the date.timezone php.ini setting, or using date_default_timezone_set()

BASIC METHODS

Create a Date – Instantiate or Static Method

The simplest way of creating a date object is to create the actual date, either by creating a new

instance with new Zend_Date() or by using the static method Zend_Date::now(). Both

will return the actual date as new instance of Zend_Date. The actual date always includes the

actual date and time for the actual set timezone.

<?php

date_default_timezone_set('America/Los_Angeles');

// time zone for an American in California

date_default_timezone_set('Europe/Berlin');

ZEND_DATE

Create a Date - Database

Zend_Date makes it very easy to create a date from database date values. So we have one

quick and one convenient way of creating dates from database values. The standard output of

all databases is quite different even if it looks the same at first. All are part of the ISO Standard

and explained through it. So, the easiest way to create a date is to use

Zend_Date::TIMESTAMP. Zend_Date::ISO_8601 works with most formats, but is not

the most efficient way.

Output a Date

The date in a Zend_Date object may be obtained as an integer or localized string using the

get() method. There are many available options.

Setting a Date

The set() method alters the date stored in the object, and returns the final date value as a

timestamp (not an object). There are many available options, the same for add() and sub().

Adding/Subtracting a Date

Adding two dates with add() usually involves adding a real date in time with an artificial

timestramp representing a date part, such as 12 hours.

 Comparing Dates

All basic Zend_Date methods can operate on entire dates contained in the objects, or on

date parts, such as comparing the minutes value in a date to an absolute value.

<?php
// SELECT UNIX_TIMESTAMP(my_datetime_column) FROM my_table
require_once 'Zend/Date.php';

$date = new Zend_Date($unixtimestamp, Zend_Date::TIMESTAMP);

<?php
require_once 'Zend/Date.php';
$date = new Zend_Date();
// Comparison of both times
if ($date->compare(10, Zend_Date::MINUTE) == -1) {
 print "This hour is less than 10 minutes old";
} else {
 print "This hour is at least 10 minutes old";
}

ZEND_DATE

Working with Dates

 Beware of mixing and matching operations with date parts between date objects for different

timezones, which generally produce undesireable results, unless the manipulations are only

related to the timestamp. Operating on Zend_Date objects having different timezones

generally works, except as just noted, since dates are normalized to UNIX timestamps on

instantiation of Zend_Date.

 The methods add(), sub(), compare(), get(), and set() operate generically on

dates. In each case, the operation is performed on the date held in the instance object. The

$date operand is required for all of these methods, except get(), and can be a Zend_Date

instance object, a numeric string, or an integer.

These methods assume $date is a timestamp, if it is not an object. However, the $part

operand controls which logical part of the two dates are operated on, allowing operations on

parts of the object's date, such as year or minute, even when $date contains a long form date

string, such as, "December 31, 2007 23:59:59". The result of the operation changes the date in

the object, except for compare(), and get().

See the online Reference Guide for more detail on date parts, methods, and options.

Using Constants

Whenever a Zend_Date method has a $parts parameter, one of a particular set of constants

can be used as the argument for that parameter, in order to select a specific part of a date or to

indicate the date format used or desired (e.g. RFC 822). See Tables 9.7 and 9.8 in the Reference

Guide for a list of relevant constants.

<?php

require_once 'Zend/Date.php';

$date = new Zend_Date();

// Comparation of both times

if ($date->compare(10, Zend_Date::MINUTE) == -1) {

 print "This hour is less than 10 minutes old";

ZEND_DATE

Checking Dates

Dates as input are often strings, and it is difficult to ascertain whether these strings are real

dates. Therefore, Zend_Date has an own static function to check date strings. Zend_Locale

has an own function getDate($date, $locale); which parses a date and returns the

proper and normalized date parts. As Zend_Locale does not know anything about dates

because it is a normalizing and localizing class, the components has an integrated own

function isDate($date); that checks this. isDate($date, $format,

$locale);requires one, but can take up to 3 parameters.

Timezones

Timezones are integral to dates, and the default has to be set in either php.ini or by

definition within the bootstrap file.

<?php
require_once 'Zend/Date.php';

// Checking dates
$date = '01.03.2000';
if (Zend_Date::isDate($date)) {
 print "String $date is a date";
} else {
 print "String $date is NO date";
}

// Checking localized dates
$date = '01 February 2000';
if (Zend_Date::isDate($date,'dd MMMM yyyy', 'en')) {
 print "String $date is a date";
} else {
 print "String $date is NO date";
}

// Checking impossible dates
$date = '30 February 2000';
if (Zend_Date::isDate($date,'dd MMMM yyyy', 'en')) {
 print "String $date is a date";
} else {
 print "String $date is NO date";
}

ZEND_CURRENCY

Zend_Currency is part of the I18N core of the Zend_Framework, and handles all issues

related to currency, money representation, and formating. It also provides additional

informational methods which include localized informations on currencies, which currency is

used in which region, etc. Zend_Currency provides the following functions for handling

currency and money-related work:

 Complete Locale Support

Zend_Currency works with all available locales and can access inforrmation on over

100 different localized currency information (currency names, abbreviations, money

signs, etc.).

 Reusable Currency Definitions

While Zend_Currency does not include the value of the currency, and therefore its

functionality is not included in Zend_Locale_Format, it does have the advantage that

already defined currency representations can be reused.

 Fluid Interface

Zend_Currency includes the fluid interface where possible.

 Additional Informational Methods

Zend_Currency includes additional methods that offer information about regions and

their corresponding currencies.

Working with Currencies

Creating an instance of Zend_Currencywithout any parameters will force the use of the

actual locale, and its related currency. If the system has no default locale, or the locale cannot

be detected automatically, Zend_Currency will throw an exception. If this case, set the locale

manually.

Optional parameters include:

Currency: currency itself (for use when multiple currencies exist within one location)

Locale: use to format the currency

 <?php
// expect standard locale 'de_AT'
require_once 'Zend/Currency.php';

// creates an instance from 'en_US' using 'USD' which is the
// default currency for 'en_US'
$currency = new Zend_Currency('en_US');

ZEND_CURRENCY

Creating Output from a Currency

Use the toCurrency() method to convert an existing value to a currency formatted output.

The value to be converted can be any normalized number. Localized numbers first have to be

converted to an normalized number with Zend_Locale_Format::getNumber().

Afterwards it can be used with toCurrency() to create a currency output.

toCurrency(array $options) accepts an array with options which can be used to

temporarily set another format or currency representation.

Changing Currency Format

Occasionally, it may be necessary to change the currency format, which includes the following

parts:

 Currency Symbol

 Currency Position

 Script

 Number Formatting

Use the setFormat() method, which takes an array containing all the options to be changed

(display position, script, format, display, precision, name, currency, symbol).

ZEND_VIEW_HELPER_TRANSLATE

Translate Helper

The display of translated content uses not only Zend_Translate, but also the Translate View

Helper. It is possible to use any instance ofZend_Translate and also any subclass of

Zend_Translate_Adapter. Ways to initiate the Translate View Helper include:

1. Registered, through a previously registered instance in Zend_Registry (preferred)

2. Afterwards, through the fluent interface

3. Directly, through initiating the class

 Example: Registered

<?php
// our example adapter
$adapter = new Zend_Translate('array', array('simple' =>
 'einfach'), 'de');
Zend_Registry::set('Zend_Translate', $adapter);

// within your view
echo $this->translate('simple');
// this returns 'einfach'

ZEND_VIEW_HELPER_TRANSLATE

 Example: Within the View

 Example: Direct Usage

Adding Parameters

Parameters (single, list, array) can simply be added to the method. Example: Array of

parameters

Changing Locale (Dynamically or Statically)

Changling Locales, dynamically or statically, also allows for a paramter array or list. In both

cases, the locale must be given as the last, single parameter. Example: Dynamically

<?php
// within your view
$adapter = new Zend_Translate('array', array('simple' =>
 'einfach'), 'de');
$this->translate()->setTranslator($adapter)->translate('simple');
// this returns 'einfach'

<?php
// our example adapter
$adapter = new Zend_Translate('array', array('simple' => 'einfach'
), 'de');

// initiate the adapter
$translate = new Zend_View_Helper_Translate($adapter);
print $translate->translate('simple'); // this returns 'einfach'

<?php
// within your view
$date = array("Monday", "April", "11:20:55");
$this->translate('Today is %1\$s in %2\$s. Actual time:
 %3\$s', $date);
// Return 'Heute ist Monday in April. Aktuelle Zeit: 11:20:55'

<?php
// within your view
$date = array("Monday", "April", "11:20:55");
$this->translate('Today is %1\$s in %2\$s. Actual time: %3\$s',
 $date, 'it');

TEST YOUR KNOWLEDGE : QUESTIONS

S A M P L E E X A M

Q U E S T I O N S

Which Zend_Date constant should you use when you want to
have the date formatted for an RSS feed?

a. Zend_Date::RSS_FEED

b. Zend_Date::RSS2

c. Zend_Date::RSS

d. Zend_Date::RSSFEED

Which method of Zend_Locale will check if a given string is

a locale?

Which Zend_Date constant should you use when you want to
have the date formatted for an RSS feed?

a. Zend_Date::RSS_FEED

b. Zend_Date::RSS2

c. Zend_Date::RSS

d. Zend_Date::RSSFEED

Which method of Zend_Locale will check if a given string is

a locale?

 isLocale

TEST YOUR KNOWLEDGE : ANSWERS = CORRECT

Zend_Mail

Use / Purpose

Recipients

Attachments

Mail - Storage

Types / Features Provider Object Instances

Custom Providers

Mail - Sending

Process Transports Safe Mode

CERTIFICATION TOPIC : MAIL

HTML Messages Multi-Part Mails

M A I L

S N A P S H O T

ZEND FRAMEWORK: MAIL

For the exam, here’s what you should know already …

You should be able to explain the purpose of the Mail component (generating, sending,

receiving emails).

You should know how to add recipients (To, CC, BCC) and attachments to an email.

You should know how to compose an HTML message.

You should know how to create a multi-part message, message attachments, and ways to

change mime_part properties.

You should know which storages are supported by Zend_Mail (Mbox, Maildir, Pop3,

IMAP).

You should know which features are supported by different mail storage providers

(local/remote. folders, flags, quotas).

M A I L

F O C U S

 ZEND_MAIL

Zend_Mail provides a general feature set to compose and send both text and MIME-

compliant multi-part email messages. Mail can be sent via Zend_Mail_Transport_Smtp

or Zend_Mail_Transport_Sendmail (default).

For most mail attributes there are "get" methods to read the information stored in the mail

object. For further details, please refer to the API documentation. A special one is

getRecipients(). It returns an array with all recipient email addresses that were added

prior to the method call. For security reasons, Zend_Mail filters all header fields to prevent

header injection with newline (\n) characters.

ZF also provides a convenient fluent interface for using most methods of the Zend_Mail
object. A fluent interface means that each method returns a reference to the object on which

it was called, allowing an immediate call to another method.

<?php
require_once 'Zend/Mail.php';
$mail = new Zend_Mail();
$mail->setBodyText('This is the text of the mail.');
$mail->setFrom('somebody@example.com', 'Some Sender');
$mail->addTo('somebody_else@example.com', 'Some Recipient');
$mail->setSubject('TestSubject');
$mail->send();

<?php
require_once 'Zend/Mail.php';
$mail = new Zend_Mail();
$mail->setBodyText('This is the text of the mail.')
 ->setFrom('somebody@example.com', 'Some Sender')
 ->addTo('somebody_else@example.com', 'Some Recipient')
 ->setSubject('TestSubject')
 ->send();

ZEND_MAIL

Sending Multiple Emails (using SMTP)

By default, a single SMTP transport creates a single connection and re-uses it for the lifetime of

the script execution. Multiple emails can be sent through this SMTP connection. An RSET

command is issued before each delivery to ensure the correct SMTP handshake is followed.

For each mail delivery to have a separate connection, the transport would need to be created

and destroyed before and after each send() method call.

HTML Email

To send an email in HTML format, set the body using the method setBodyHTML() instead of

setBodyText(). The MIME content type will automatically be set to text/html then. If

you use both HTML and Text bodies, a multipart/alternative MIME message will be

automatically generated.

<?php
// Load classes
require_once 'Zend/Mail.php';

// Create transport
require_once 'Zend/Mail/Transport/Smtp.php';
$transport = new Zend_Mail_Transport_Smtp('localhost');

// Loop through messages
for ($i = 0; $i > 5; $i++) {
 $mail = new Zend_Mail();
 $mail->addTo('studio@peptolab.com', 'Test');
 $mail->setFrom('studio@peptolab.com', 'Test');
 $mail->setSubject('Demonstration -
 Sending Multiple Mails per SMTP Connection');
 $mail->setBodyText('...Your message here...');
 $mail->send($transport);
}

<?php
require_once 'Zend/Mail.php';
$mail = new Zend_Mail();
$mail->setBodyText('My Nice Test Text');
$mail->setBodyHtml('My Nice Test Text');
$mail->setFrom('somebody@example.com', 'Some Sender');
$mail->addTo('somebody_else@example.com', 'Some Recipient');
$mail->setSubject('TestSubject');
$mail->send();

ZEND_MAIL

Sending Attachments

Files can be attached to an e-mail using the createAttachment() method. The default

behavior of Zend_Mail is to assume the attachment is a binary object (application/octet-

stream), should be transferred with base64 encoding, and is handled as an attachment. These

assumptions can be overridden by passing more parameters to createAttachment().

 For more control over the MIME part generated for this attachment, use the return value of

createAttachment() to modify its attributes. The createAttachment() method

returns a Zend_Mime_Part object.

Using Mixed Transports

To send different emails through different connections, the transport object can be directly

passed to send() without a prior call to setDefaultTransport(). The passed object will

override the default transport for the actual send() request generated.

<?php
require_once 'Zend/Mail.php';
$mail = new Zend_Mail();
// build message...
$mail->createAttachment($someBinaryString);
$mail->createAttachment($myImage, 'image/gif',
 Zend_Mime::DISPOSITION_INLINE, Zend_Mime::ENCODING_8BIT);

<?php
require_once 'Zend/Mail.php';
$mail = new Zend_Mail();

$at = $mail->createAttachment($myImage);
$at->type = 'image/gif';
$at->disposition = Zend_Mime::DISPOSITION_INLINE;
$at->encoding = Zend_Mime::ENCODING_8BIT;
$at->filename = 'test.gif';

$mail->send();

<?php
require_once 'Zend/Mail.php';
$mail = new Zend_Mail(); // build message...
require_once 'Zend/Mail/Transport/Smtp.php';
$tr1 = new Zend_Mail_Transport_Smtp('server@example.com');
$tr2 = new Zend_Mail_Transport_Smtp('other_server@example.com');
$mail->send($tr1);
$mail->send($tr2);
$mail->send(); // use default again

ZEND_MAIL

Adding Recipients

Recipients can be added in three ways:

 addTo() Adds a recipient to the email with a 'To' header

 addCc() Adds a recipient to the email with a 'Cc' header

 addBcc() Adds a recipient to the email not visible in the header

Note: addTo() and addCc() both accept a second, optional parameter that is used to

provide a readable name for the recipient in the header.

Additional Headers

Arbitrary mail headers can be set by using the addHeader() method. It requires two

parameters containing the name and the value of the header field. A third optional parameter

determines if the header should have one or multiple values.

Encoding

Text and HTML message bodies are encoded with the 'quotedprintable' mechanism by

default. All other attachments are encoded via base64 if no other encoding is given in the

addAttachment()call or assigned to the MIME part object later. 7Bit and 8Bit encoding

currently only pass on the binary content data.

Zend_Mail_Transport_Smtp encodes lines starting with one dot or two dots so that the

mail does not violate the SMTP protocol.

<?php
require_once 'Zend/Mail.php';
$mail = new Zend_Mail();
$mail->addHeader('X-MailGenerator', 'MyCoolApplication');
$mail->addHeader('X-greetingsTo', 'Mom', true);
// multiple values
$mail->addHeader('X-greetingsTo', 'Dad', true);

ZEND_MAIL

Reading Mail Messages

Zend_Mail can read mail messages from several local or remote mail storages, all with the

same basic API to count and fetch messages. Some of them implement additional interfaces

for relatively uncommon features. The table below provides a feature overview:

FEATURE Mbox Maildir Pop3 IMAP

Storage Type local local remote remote

Fetch message Yes Yes Yes Yes

Fetch mime-part Emulated Emulated Emulated Emulated

Folders Yes Yes No Yes

Create message/

folder

No todo No todo

Flags No Yes No Yes

Quota No Yes No No

Code Example: Pop3

Opening a Local Storage

Mbox and Maildir are the two supported formats for local mail storages, both in their most

simple formats. To read from a Mbox file, give the filename to the constructor of

Zend_Mail_Storage_Mbox. (see Programmers Guide for other examples)

<?php
$mail = new Zend_Mail_Storage_Pop3(array('host' =>'localhost',
 'user' =>'test',
 'password'=>'test'));
echo $mail->countMessages() . " messages found\n";
foreach ($mail as $message) {
 echo "Mail from '{$message->from}': {$message->subject}\n";
}

<?php
$mail = new Zend_Mail_Storage_Mbox(array('filename' =>
 '/home/test/mail/inbox'))

ZEND_MAIL

Fetching Mail Messages

Messages can be retrieved once the storage has been opened, using the message number

and the method getMessage(). Array access is also supported, but only with the default

values.

Headers can be fetched via properties, or the method getHeader() for greater control,

unusual header names, or to retrieve multiple headers with the same name as an array

(Example given below).

Content can be fetched using getContent(), as long as the email does not have a multi-part

message. Content is retrieved only when needed (“late-fetch”). To check for a multi-part

message, use the method isMultipart(). With multi-part messages, use the method

getPart() to create an instance of Zend_Mail_Part (the base class of

Zend_Mail_Message). This will make available the same methods: getHeader(),

getHeaders(), getContent(), getPart(), isMultipart and the properties for

headers.

<?php
$message = $mail->getMessage($messageNum);

<?php
// get header as property – the result is always a string, with
// new lines between the single occurrences in the message
$received = $message->received;

// the same via getHeader() method
$received = $message->getHeader('received', 'string');

// better an array with a single entry for every occurrences
$received = $message->getHeader('received', 'array');
foreach ($received as $line) {
 // do stuff
}

// if you don't define a format you'll get the internal
// representation (string for single headers, array for multiple)
$received = $message->getHeader('received');
if (is_string($received)) {
 // only one received header found in message
}

ZEND_MAIL

Checking for Flags

Maildir and IMAP support storing flags. The class Zend_Mail_Storage has constants for all

known Maildir and IMAP system flags, Zend_Mail_Storage::FLAG_<flagname>.

Zend_Mail_Message uses the method hasFlag()to check for flags. getFlags()

retrieves all set flags.

 .

<?php
// find unread messages
echo "Unread mails:\n";
foreach ($mail as $message) {
 if ($message->hasFlag(Zend_Mail_Storage::FLAG_SEEN)) {
 continue;
 }
 // mark recent/new mails
 if ($message->hasFlag(Zend_Mail_Storage::FLAG_RECENT)) {
 echo '! ';
 } else {
 echo ' ';
 }
 echo $message->subject . "\n";
}
// check for known flags
$flags = $message->getFlags();
echo "Message is flagged as: ";
foreach ($flags as $flag) {
 switch ($flag) {
 case Zend_Mail_Storage::FLAG_ANSWERED:
 echo 'Answered ';
 break;
 case Zend_Mail_Storage::FLAG_FLAGGED:
 echo 'Flagged ';
 break;

 // ...
 // check for other flags
 // ...

 default:
 echo $flag . '(unknown flag) ';
 }
}

ZEND_MAIL

Using Folders

All storage types except Pop3 support folders, or ‘mailboxes’. The interface implemented by

all storage-supporting folders is called Zend_Mail_Storage_Folder_Interface.

All related classes have an additional optional parameter called folder, which is the folder

selected after login, in the constructor.

For local storage, use the separate classes Zend_Mail_Storage_Folder_Mbox or

Zend_Mail_Storage_Folder_Maildir. Both need one parameter, dirname, with the

name of the base dir.

The format for maildir is as defined in maildir++ (with a dot as the default delimiter).

Mbox is a directory hierarchy with Mbox files. If the Mbox file called INBOX is missing from the

Mbox base directory, set another folder in the constructor. Zend_Mail_Storage_Imap

already supports folders by default.

Example: opening storages

 .

<?php
// Mbox with folders
$mail = new Zend_Mail_Storage_Folder_Mbox(array
 ('dirname' => '/home/test/mail/'));

// Mbox with default folder not called INBOX; also works for
// Zend_Mail_Storage_Folder_Maildir and Zend_Mail_Storage_Imap
$mail = new Zend_Mail_Storage_Folder_Mbox(array
 ('dirname' => '/home/test/mail/',
 'folder' => 'Archive'));

// maildir with folders
$mail = new Zend_Mail_Storage_Folder_Maildir(array
 ('dirname' => '/home/test/mail/'));

// maildir with colon as delimiter, as suggested in Maildir++
$mail = new Zend_Mail_Storage_Folder_Maildir(array
 ('dirname' => '/home/test/mail/'
 'delim' => ':'));

// imap is the same with and without folders
$mail = new Zend_Mail_Storage_Imap(array
 ('host' => 'example.com'
 'user' => 'test',
 'password' => 'test'));

ZEND_MAIL

Using Folders (continued)

The method getFolders($root=null)returns the folder hierarchy starting with either the

root or given folder. The return is an instance of Zend_Mail_Storage_Folder, which

implements RecursiveIterator; all ‘children’ are also instances of

Zend_Mail_Storage_Folder. Each of these instances has a local and a global name

returned by the methods getLocalName() and getGlobalName(). The global name is

the absolute name from the root folder (including delimiters); the local name is the name in

the parent folder.

GLOBAL NAME LOCAL NAME

/INBOX INBOX

/Archive/2005 2005

List.ZF.General General

The key of the current element is the local name when using the iterator. The global name is

also returned by the magic method __toString(). Some folders may not be selectable -

they cannot store messages and selecting them results in an error. This can be checked with

the method isSelectable(). Selected folders are returned by the method

getSelectedFolder() – changing folders is accomplished with selectFolder() and

the global name as a parameter. (Code Example: Folder Hierarchy view)

 .

<?php
$folders=new RecursiveIteratorIterator($this->mail->getFolders(),
 RecursiveIteratorIterator::SELF_FIRST);
echo '<select name="folder">';
foreach ($folders as $localName => $folder) {
 $localName = str_pad('', $folders->getDepth(), '-',
 STR_PAD_LEFT) . $localName;
 echo '<option';
 if (!$folder->isSelectable()) {
 echo ' disabled="disabled"';
 }
 echo ' value="' . htmlspecialchars($folder) . '">'
 . htmlspecialchars($localName) . '</option>';
}
echo '</select>';

ZEND_MAIL

Caching Instances

Zend_Mail_Storage_Mbox, Zend_Mail_Storage_Folder_Mbox,

Zend_Mail_Storage_Maildir and Zend_Mail_Storage_Folder_Maildir

implement the magic methods __sleep() and __wakeup(), which means they are

serializable. This avoids parsing the files or directory tree more than once.

The disadvantage is that the Mbox or Maildir storage should not change. Some easy checks

are done, like reparsing the current Mbox file if the modification time changes or reparsing the

folder structure if a folder has vanished – this still results in an error, but a later search can be

made for another folder. A best practice is to have something like a signal file for changes and

check it before using the cached instance.

 Extending Protocol Classes

Remote storage uses two classes: Zend_Mail_Storage_<Name> and

Zend_Mail_Protocol_<Name>. The protocol class translates the protocol commands

and responses from and to PHP, like methods for the commands or variables with different

structures for data. The other/main class implements the common interface. Additional

protocol features can extend the protocol class and be used within the constructor of the

main class.

Code Example given on next page…

<?php
// there's no specific cache handler/class used here,
// change the code to match your cache handler
$signal_file = '/home/test/.mail.last_change';
$mbox_basedir = '/home/test/mail/';
$cache_id = 'example mail cache ' . $mbox_basedir . $signal_file;

$cache = new Your_Cache_Class();
if (!$cache-
>isCached($cache_id) || filemtime($signal_file) > $cache-
>getMTime($cache_id)) {
 $mail = new Zend_Mail_Storage_Folder_Pop3(array('dirname' =>
$mbox_basedir));
} else {
 $mail = $cache->get($cache_id);
}

// do stuff ...

$cache->set($cache_id, $mail);

ZEND_MAIL

Code Example: there is a need to knock different ports before connecting to POP3

<?php
require_once 'Zend/Loader.php';
Zend_Loader::loadClass('Zend_Mail_Storage_Pop3');

class Example_Mail_Exception extends Zend_Mail_Exception
{
}
class Example_Mail_Protocol_Exception extends Zend_Mail_Protocol_Exception
{
}
class Example_Mail_Protocol_Pop3_Knock extends Zend_Mail_Protocol_Pop3
{
 private $host, $port;
 public function __construct($host, $port = null)
 {
 // no auto connect in this class
 $this->host = $host;
 $this->port = $port;
 }
 public function knock($port)
 {
 $sock = @fsockopen($this->host, $port);
 if ($sock) {
 fclose($sock);
 }
 }
 public function connect($host = null, $port = null, $ssl = false)
 {
 if ($host === null) {
 $host = $this->host;
 }
 if ($port === null) {
 $port = $this->port;
 }
 parent::connect($host, $port);
 }
}
class Example_Mail_Pop3_Knock extends Zend_Mail_Storage_Pop3
{
 public function __construct(array $params)
 {
 // ... check $params here! ...
 $protocol = new Example_Mail_Protocol_Pop3_Knock($params['host']);

 // do our "special" thing
 foreach ((array)$params['knock_ports'] as $port) {
 $protocol->knock($port);
 }

 // get to correct state
 $protocol->connect($params['host'], $params['port']);
 $protocol->login($params['user'], $params['password']);

 // initialize parent
 parent::__construct($protocol);
 }
}
$mail = new Example_Mail_Pop3_Knock(array('host' => 'localhost',
 'user' => 'test',
 'password' => 'test',
 'knock_ports' => array(1101, 1105, 1111)));

TEST YOUR KNOWLEDGE : QUESTIONS

How would you connect to a Pop3 server using TLS??

a. <?php
$mail = new Zend_Mail_Storage_Pop3_Tls(array('host'

 ='example.com','user' ='test')); ?>

b. <?php
$mail = new Zend_Mail_Storage_Pop3(array('host'

 ='example.com','user' ='test',
 'ssl' = true)); ?>

c. <?php

$mail = new Zend_Mail_Storage_Pop3(array('host'
 ='example.com', 'user' ='test',

'ssl' = 'tls')); ?>

d. <?php
$mail = new Zend_Mail_Storage_Pop3(array('host'

 ='example.com', 'user' ='test',
 'tls' = true)); ?>

With quotas enabled which methods might fail because you're
over quota? (choose TWO)

a. appendMessage()

b. removeMessage()

c. createFolder()
d. getMessage()

S A M P L E E X A M

Q U E S T I O N S

Which one of the following will NOT assign the values to the
view object?

a. <?php
$mail = new Zend_Mail_Storage_Pop3_Tls(array('host'

 ='example.com','user' ='test')); ?>

b. <?php
$mail = new Zend_Mail_Storage_Pop3(array('host'

 ='example.com','user' ='test',
 'ssl' = true)); ?>

c. <?php

$mail = new Zend_Mail_Storage_Pop3(array('host'
 ='example.com', 'user' ='test',

'ssl' = 'tls')); ?>

d. <?php
$mail = new Zend_Mail_Storage_Pop3(array('host'

 ='example.com', 'user' ='test',
 'tls' = true)); ?>

With quotas enabled which methods might fail because you're
over quota? (choose TWO)

a. appendMessage()

b. removeMessage()

c. createFolder()

d. getMessage()

TEST YOUR KNOWLEDGE : ANSWERS
= CORRECT

Components Purpose of Pattern Definitions

Pattern Basics

Component Areas of Responsibility

Model Function View Function Controller Function

Front Controller Action Controllers Action Helpers

Plugins ViewRenderer

Dispatcher

Router Request Object Response Object

Definitions Use / Purpose Hooks

Dispatch Loop / Bootstrap / Rewrite

CERTIFICATION TOPIC : MODEL-VIEW-CONTROLLER

M V C

S N A P S H O T

Zend_View

Definitions View Scripts

View Helpers

View Rendering View Partials View Placeholders

View Filters View Variables Content (Escape)

Definitions Use / Purpose Front Controller

Action Controllers

Action Methods Modules

Zend_Controller

Definitions Initialization

Access Content

Zend_Layout

Zend Framework: MVC Pattern

For the exam, here’s what you should know already…

The Model – View – Controller (MVC) design pattern is an object-oriented design pattern for

creating applications, useful for both client and web GUI (Graphical User Interfaces). This

pattern was originally designed for the client side, but has since evolved options especially

suited for the web (Example: current Controller design).

It serves to modularize an application – to separate the business logic from the user

display/interaction – by the use of controllers. This separation makes it easier to alter one facet

of the application (Example: data source) without affecting the other, thereby avoiding an

entire application re-design for a simple change.

Zend Framework has been based on the MVC design, because of the pattern’s flexibility,

efficiency, and ease of use.

The MVC structure is most often employed when creating new applications.

The diagram below illustrates the three component layers that compose the pattern, and the

general purpose for each.

The View renders the model to The View renders the model to
the end user and providesthe end user and provides
interfaces to accept input interfaces to accept input

into the controllerinto the controller

The controller acceptsThe controller accepts
user input and executesuser input and executes

application logicapplication logic

The model provides accessThe model provides access
to data for the controller and to data for the controller and
notifies the view of changesnotifies the view of changes

M V C

F O C U S

 ESSENTIAL TERMS

Model: The Model is used to implement domain (business) logic, such as performing

calculations. This often involves accessing data sources. The application

designer has complete freedom to decide where it comes from and how it is

used, if it is used at all. Data within the Model can exist in a database, LDAP

server, web service, etc.

 As the MVC structure provides the ability to later alter aspects without an

entire re-design, it is relatively easy to change sources by changing the Model,

not the entire application (Example: authentication from a database to an

LDAP server with expansion…).

View: The View is basically synonymous with HTML for many applications. It is the

template layer, where all HTML rendering takes place, and where everything to

be displayed to a user is assembled. It does not contain either business or

application logic.

In most modern (2.0) applications, such as AJAX-based applications, the View

does not have to be HTML -- it can render XML, JSON, or any other format

required by the application.

Controller: The Controller layer of the pattern is actually the only one of the three that is

required. The Controller accepts and then processes the input, while

interacting with component libraries, Models, and Views.

 The Controller ultimately handles the request and outputs the results to the

user based on business logic. The system within ZF is designed to be

lightweight, modular, and extensible.

More in-depth information on Zend_Controller and Zend_View can be found in later

sections of this guide.

Bootstrap: The bootstrap file is the single entry point to the application – all requests are

routed through this page. It is responsible for loading and dispatching the

Front Controller. Example:

require_once ‘Zend/Controller/Front.php’;
Zend_Controller_Front::run(‘/path/to/app/controllers’);

Zend_Controller

Zend_Controller is the core of the MVC pattern within Zend Framework. Controllers allow
the Business logic (Model) to be separated from the Display logic (View) and yet still function
integrally through the use of requests and responses executed by action controllers.

Diagrams for Context

MVC Mapping to URL

This diagram depicts a sample URL and how its structure maps to the MVC pattern. It clearly

illustrates how an action is mapped to the controller, along with any parameters assigned in

key-value pairs. Keep this structure in mind as the various controllers are further discussed.

Dispatch Process

The Dispatch process is composed of three steps:

Route : takes place only once, using data in Request Object when

dispatch() is called

Dispatch : takes place in a Loop… Request Object indicates multiple

actions, or Controller (Plugin) resets Request Object, forcing

additional actions

Response : sends final response, including all headers and content

http://www.example.com / controller / action / param1 / value1 / param2 / value2

controller
maps to the ClassName of the
Controller Being executed

action
maps to the Method of the
chosen controller to execute

Parameters
can be passed as shown
in key / value pairs

http://www.example.com / controller / action / param1 / value1 / param2 / value2

controller
maps to the ClassName of the
Controller Being executed

action
maps to the Method of the
chosen controller to execute

Parameters
can be passed as shown
in key / value pairs

Zend_Controller: Extensions

The Zend Controller requires a set of ZF component extensions and plugins to function

properly, with at least one or more paths to directories containing action controllers. A variety

of methods may also be invoked to further tailor the front controller environment and that of

its helper classes. The essential extensions, both for development and for the exam, are

provided below. (See the online Reference Guide for more detail.)

Zend_Controller_Front

Zend_Controller_Front processes all requests received by the server, then routes and

dispatches them to the appropriate action controllers. Key points about this component and

its extensions:

 It implements the Singleton pattern (one instance available at a time) **

 It registers a plugin broker with itself, allowing user code to be called when certain

events occur in controller process; the event methods are defined in

Zend_Controller_Front_Plugin_Abstract

 The ErrorHandler plugin and ViewRenderer action helper plugin are loaded by

default; the plugins are created by including and extending the abstract class

 Zend_Controller_Front::run($path) is a static method, which sets the path

to a directory of controllers and dispatches the request; it performs the following 3

methods at once:

 getInstance() retrieves a Front Controller instance; it is the

only way to instantiate a front controller object **

 setControllerDirectory() directs the Dispatcher where to find action

 controller class files (register path);

 dispatch() can accept customized Request & Response

objects; otherwise, it looks for previously

registered objects to use, or instantiates default

versions (HTTP default); it also checks for

registered router and dispatcher objects,

instantiating the defaults if none are found

require_once 'Zend/Controller/Plugin/Abstract.php';
class MyPlugin extends Zend_Controller_Plugin_Abstract
{

Zend_Controller_Action

Zend_Controller_Action is an abstract class that implements action controllers within the

MVC pattern. Key points about this controller and its related extensions:

 To utilize the component, extend the action controller itself, placing the class file in the

appropriate controller directory; then create action methods corresponding to the

desired actions

 It can execute a variety of actions, such as custom initializations, default actions,

 pre-/post-dispatch hooks, helper methods

Hooks: specify 2 methods to bracket a requested action:

 preDispatch() can be used to verify authentication and ACLs prior
to an action

 postDispatch() can perform post-processing actions, such as
determining additional actions to dispatch

Action inject runtime and/or on-demand functionality into any action

Helpers: controller that extends Zend_Controller_Action, reducing the need for
extensions

 correspond to the most common action controller functions

 utilize a Broker system (as does Zend_Controller_Action_Plugin)

may be loaded / called on-demand, or instantiated at the time a request is made
[bootstrap], or an action controller is created, using init()

Helper use getHelper() or the Plugin Broker’s __get() function or the Helper's

Methods: method direct() … this last option is illustrated below:

$this->_helper->MessageName
 ('We did something in the last request');

Zend_Controller_Action

ViewRenderer: one of several actions helpers included by default within ZF

It automates the process of setting up the view object in the controllers
and rendering the view

loaded by the front controller, by default; called by the action controller to

render the appropriate view script for a given controller/action request.

Creating an Action Helper

Action helpers extend Zend_Controller_Action_Helper_Abstract, an abstract class

that provides the basic interface and functionality required by the helper broker. These include

the following methods:

 setActionController() is used to set the current action controller

 init(), triggered by the helper broker at instantiation, can be used to trigger

initialization in the helper; this can be useful for resetting state when multiple controllers

use the same helper in chained actions

 preDispatch(), is triggered prior to a dispatched action

 postDispatch() is triggered when a dispatched action is done -- even if a

preDispatch() plugin has skipped the action; mainly useful for cleanup

 getRequest() retrieves the current request object

 getResponse() retrieves the current response object

 getName() retrieves the helper name. It retrieves the portion of the class name following

the last underscore character, or the full class name otherwise.

 For example, if the class is named

Zend_Controller_Action_Helper_Redirector, it will return

Redirector; a class named FooMessage will simply return itself

You may optionally include a direct() method in your helper class. If defined, it allows you to

treat the helper as a method of the helper broker, in order to allow easy, one-off usage of the

helper.

Zend_Controller_Request_Abstract

also known as the Request Object

It is a simple value object passed between Zend_Controller_Front and the router,

dispatcher, and controller classes.

 Values for the controller, action, and parameters are packaged into a

 request extension

 Associated methods retrieve the request URI, path, $_GET & $_POST

 parameters, etc.

 Tracks whether action has been dispatched via

Zend_Controller_Dispatcher

Zend_Controller_Request_Http The Default request in ZF

 Methods

 The object provides methods for setting and retrieving controller & action

 names, along with associated parameters:

 getModuleName() setModuleName()

 getControllerName() setControllerName()

 getActionName() setActionName()

 getParam() setParam() for arrays, use Params

Zend_Controller_Response_Abstract

also known as the Response Object

This defines a base response class used to collect and return responses from action controllers;

it collects both body and header information.

Zend_Controller_Response_HTTP The Default response in ZF, for use in an

HTTP environment

Zend_Controller_Router

It defines all routers used in allocating requests to the correct controller and action, with

optional parameters set in the Request object via Dispatcher_Standard.

The routing process occurs only once when the request is received and before the first

controller is dispatched

Zend_Controller_Router_Interface The component used to define routers

Zend_Controller_Router_Rewrite Takes URI endpoint and breaks it into a

 controller action and parameters

Based on URL path; also used for matching

arbitrary paths

Works in conjunction with mod_rewrite or

other rewriters, based on the web server used;

the simplest rule to use is a single Apache

 mod_rewrite rule, although others are

 supported

User-defined routes are added by calling

addRoute() and passing a new instance of a

class implementing

Zend_Controller_Router_Interface

/* Create a router */
$router = $ctrl->getRouter();
// returns a rewrite router by default
$router->addRoute(
 'user' ,
 new Zend_Controller_Router_Route(
 'user/:username',
 array(
 'controller' => 'user',
 'action' -> 'info'
)
)
);

RewriteEngine on
RewriteRule !\.(js|ico|gif|jpg|png|css)$ index.php

Zend_View

Zend_View is a class for working with the Display logic of the MVC design pattern, and
provides a system of Helpers, Output Filters, and Variable escaping.

This class is independent of template type – you can use PHP as the template language, or use

other template systems with view scripts. You can also create your own view implementation

by implementing Zend_View_Interface in a custom class.

There are three distinct steps in using Zend_View:

(1) Create an instance of the View

(2) Assign the variables to the View via a Controller Script

(3) Render the View (the Controller instructs Zend_View to render the output, and

transfers control of the display to the View Script)

Code Examples for Context: Retrieving and Displaying Data

Controller Script Example: Retrieve Book Data from Controller

// use a model to get the data for book authors and titles
$data = array(
 array(
 'author' => 'Isabelle Allende',
 'title' => 'The House of Spirits'
),
 array(
 'author' => 'Dr. Jacob Bronowski',
 'title' => 'The Ascent of Man'
)
);

// now assign the book data to a Zend_View instance
Zend_Loader::loadClass('Zend_View');
$view = new Zend_View();
$view->books = $data;

// and render a view script called "booklist.php"
echo $view->render('booklist.php');

 View Script Example: Display Book Data (booklist.php, as in Controller Script)

Note how the “escape()” method is used to apply output escaping to variables

<?php if ($this->books): ?>

 <!-- A table of some books. -->
 <table>
 <tr>
 <th>Author</th>
 <th>Title</th>
 </tr>

 <?php foreach ($this->books as $key => $val): ?>
 <tr>
 <td>
 <?php echo $this->escape($val['author']) ?>
 </td>
 <td><?php echo $this->escape($val['title']) ?>
 </td>
 </tr>
 <?php endforeach; ?>

 </table>

<?php else: ?>

 <p>There are no books to display.</p>

<?php endif;

Essential View Elements

View Helpers Equate to a class

 Format: Zend_View_Helper_SampleName, and are called by using

$this->sampleName()

Initial Helpers Set of view helpers automatically available within ZF

 Most are related to Form element generation and output escaping

 Some create route-based URLs and HTML lists, and declare variables

Action View Enable view scripts to dispatch a specific controller action; following

Helpers the dispatch, the response object result is returned;

 Action view helpers are used when a particular action could generate

 re-usable content;

Partial Helper Used to render a specific template within its own variable scope;

 Primarily used for re-usable template fragments with no chance of

 variable name conflicts;

 Also allows for calling partial view scripts from specific modules;

Placeholder Used to persist content between view scripts and view instances;

Helper Also, to aggregate content, capture view script content for re-use,

 add pre- and post-text to content (custom separators for aggregate);

<?php // partial.phtml ?>

 From: <?= $this->escape($this->from) >?
 Subject: <?= $this->escape($this->subject) >?

// Call it from the View Script
<?= $this->partial('partial.phtml', array(
 'from' => 'Team Framework',
 'subject' => 'view partials')); ?>

// Which renders…

 From: Team Framework
 Subject: view partials</li

<?php $this->placeholder('foo')->set("Text for later") ?>

<?php
 echo $this->placeholder('foo');// outputs "Text for later"

Essential View Elements

Helper Paths The controller can specify a stack of paths where Zend_View should

 search for helper classes;

 By default, it looks in Zend/View/Helper*;

 To specify other locations to search, use

 addHelperPath()/setHelperPath();

 Zend_View will look at the most recently added path for a requested

 helper class

This allows for adding or overriding the initial distribution of helpers by

using custom helpers

 Can stack paths using addHelperPath()

Filters Can indicate a filter to use after rendering a script with setFilter()

 or addFilter() or the filter option to the constructor

<?php
$view = new Zend_View();

//Set path to /path/to/more/helpers, prefix 'My_View_Helper'
$view->setHelperPath('/path/to/more/helpers',
 'My_View_Helper');

<?php
$view = new Zend_View();
// Add /path/to/some/helpers… class prefix 'My_View_Helper'
$view->addHelperPath('/path/to/some/helpers',
 'My_View_Helper');
// Add /other/path/to/helpers… prefix 'Your_View_Helper'
$view->addHelperPath('/other/path/to/helpers',
 'Your_View_Helper');

// When you call $this->helperName(),Zend_View will look
// first for "/other/path/to/helpers/HelperName.php" using
// class name "My_View_Helper_HelperName",
// then for "/path/to/some/helpers/HelperName" using class
// name "Your_View_Helper_HelperName", and
// finally for "Zend/View/Helper/HelperName.php" using
// class name "Zend_View_Helper_HelperName".

Zend_Layout:

Zend_Layout implements a classic Two-Step View pattern, allowing developers to wrap

application content within another view, usually the site template. Usually, this pattern has

been called a Layout, so ZF has adopted this convention.

Among the goals of this component is:

 Automatic selection and rendering of layouts when used with the ZF MVC components

 Separate scope for layout-related variables and content

 Configuration of layout name, inflection, and path

 Disabling of layouts, changing scripts, etc., from within action controllers and view

scripts

 Following script resolution rules as defined with ViewRenderer, but also the ability to

override them

 Usage without ZF MVC components

Zend_Layout Sample Script:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
 <meta http-equiv="Content-
Type" content="text/html; charset=utf-8" />
 <title>My Site</title>
</head>
<body>
<?php
 // fetch 'content' key using layout helper:
 echo $this->layout()->content;
 // fetch 'foo' key using placeholder helper:
 echo $this->placeholder('Zend_Layout')->foo;
 // fetch layout object and retrieve various keys from it:
 $layout = $this->layout();
 echo $layout->bar;
 echo $layout->baz;
?>
</body>
</html>

Zend_Layout Utilizing the Zend Framework MVC:

Zend_Layout takes advantage of the rich feature set provided by Zend_Controller (Example:

Front Controller plugins, Action Controller Helpers) and Zend_View (Example: Helpers) as

discussed in previous sections.

Initialize Zend_Layout for use with MVC (sample code examples follow)

Zend_Layout::startMvc()

 creates an instance of Zend_Layout with any optional configuration provided

 registers a front controller plugin that renders the layout with any application

content once the dispatch loop is done

 registers an action helper to allow access to the layout object from the action

controllers; can grab the layout instance from within a view script using the

Layout View Helper at any time

Access Layout Instance as an Action Helper with the Action Controller

<?php
// Put into the bootstrap file:
Zend_Layout::startMvc();
?>

<?php
class FooController extends Zend_Controller_Action
{
 public function barAction()
 {
 // disable layouts for this action:
 $this->_helper->layout->disableLayout();
 }

 public function bazAction()
 {
 // use different layout script with this action:
 $this->_helper->layout->setLayout('foobaz');
 };
}
?>

Access Layout Object using the Layout View Helper

Fetch Layout Instance using getMvcInstance() Method

Zend_Layout Front Controller Plugin

 renders the layout

 retrieves all named segments from the Response Object

o assigns them as layout variables

o assigns the ‘default’ segment to the variable ‘content’ (which allows for

access to application content and rendering within view scripts)

o especially useful in combination with ActionStack Helper and Plugin (sets

up stack of actions to loop through, creating widgetized pages)

<?php $this->_layout()->setLayout('foo');
 // set alternate layout
?>

<?php
 // Returns Null if startMvc() has not been called
$layout = Zend_Layout::getMvcInstance();
?>

/* In this code example, FooController::indexAction()
 renders content to the default response segment, and
 then forwards it to NavController::menuAction(), which
 renders the content to the ‘nav’ response segment…
 The final forward is to CommentController::fetchAtion(),
 to fetch comments and render them to the default
 response segment via an 'append'. The view script can
 render each separately. */
<body>
 <!-- renders /nav/menu -->
 <div id="nav"><?= $this->layout()->nav ?></div>

 <!-- renders /foo/index + /comment/fetch -->
 <div id="content"><?= $this->layout()->content ?></div>
</body>

Zend_Layout as a Standalone Component (without ZF MVC):

Although lacking many key features when used without the MVC structure Zend_Layout

still retains two primary benefits:

 scoping of layout variables

 isolation of layout view script from other view scripts

Utilizing Zend_Layout as Standalone Component

<?php
$layout = new Zend_Layout();

// Set a layout script path:
$layout->setLayoutPath('/path/to/layouts');

// set some variables:
$layout->content = $content;
$layout->nav = $nav;

// choose a different layout script:
$layout->setLayout('foo');

// render final layout
echo $layout->render();
?>

Zend_Layout as a Standalone Component (without ZF MVC):

Sample Layout Representation (order of elements will vary depending upon chosen CSS)

<?=$this->docType(‘XHTML1_STRICT’) ?>
<html>
 <head>
 <? = $this->headTitle() ?>
 <? = $this->headScript() ?>
 <? = $this->headStylesheet() ?>
 </head>
 <body>

 </body>
</html>

CONTENT

<? = $this->layout()->content ?>

HEADER

<? = $this->partial(‘header.phtml’)?>

FOOTER

<? = $this->partial(‘footer.phtml’)?>

NAVIGATION

<? = $this->layout()->nav ?>

SIDEBAR

<? = $this->layout()->sidebar ?>

TEST YOUR KNOWLEDGE : QUESTIONS

Which one of the following will NOT assign the values to the
view object?

a. <code>
 $view->foo = 'bar';
 $view->bar = 'baz';
 </code>

b. <code>
 $view->assign(array(
 'foo' => 'bar',
 'bar' => 'baz',
));
 </code>

c. <code>
 $view->assign('foo', 'bar');
 $view->assign('bar', 'baz');
 </code>

d. <code>
$view->assign(
 array('foo' => 'bar'),
 array('bar' => 'baz')
);
</code>

Front Controller plugins and Action Helpers share what
common feature?

a. pre- and postDispatch() hooks

b. Introspection of the action controller

c. Ability to change routing behavior
d. Registration with a common broker

S A M P L E E X A M

Q U E S T I O N S

Which one of the following will NOT assign the values to the
view object?

a. <code>
 $view->foo = 'bar';
 $view->bar = 'baz';
 </code>

b. <code>
 $view->assign(array(
 'foo' => 'bar',
 'bar' => 'baz',
));
 </code>

c. <code>
 $view->assign('foo', 'bar');
 $view->assign('bar', 'baz');
 </code>

d. <code>
$view->assign(
 array('foo' => 'bar'),
 array('bar' => 'baz')
);
</code>

Front Controller plugins and Action Helpers share what
common feature?

a. pre- and postDispatch() hooks

b. Introspection of the action controller

c. Ability to change routing behavior
d. Registration with a common broker

TEST YOUR KNOWLEDGE : ANSWERS = CORRECT

Zend_Memory

Modes Storage Retrieval

Zend_Cache

Use / Purpose Drivers Setting Options

Auto-serialization Functions

Implications of File

Zend_Loader

CERTIFICATION TOPIC : PERFORMANCE

P E R F O R M A N C E

S N A P S H O T

Performance Configuration

Zend_Config

Optimization

Opcode Cache Profiling

 Zend Framework: Performance

For the exam, here’s what you should know already …

You should be able to explain how caching works and the benefits it provides.

You should know what kinds of frontends and backends Zend Framework employs, and the

various caching options available.

You should be familiar with opcode caching and profiling.

You should know how to utilize the factory function for Cache and Memory.

You should know how the Memory function works within the framework, for storage and

retrieval.

You should understand the trade-off relationship between performance and the Loader.

P E R F O R M A N C E

F O C U S

 ZEND_CACHE

Zend_Cache provides a generic way of caching data. Caching in Zend Framework is

operated by frontends while cache records are stored through backend adapters (File,

Sqlite, Memcache...) through a flexible system of IDs and tags. These IDs and tags allow for

easier deletion by type.

Zend_Cache_Core, the core of the module, is generic, flexible and configurable. Cache

frontends that extend Zend_Cache_Core include: Output, File, Function and Class.

The addition of a frontend turns on serialization, so that any type of data can be cached. This

helps to boost performance. For example, the results of a resource-intensive query can be

cached and retrieved later (unserialized) without requiring a connection to the database and

running the query again.

Zend_Cache::factory() instantiates correct objects and ties them together.

Example: Using a Core frontend together with a File backend

A core strategy for caching is to demarcate the sections in which to cache output by adding

some conditional logic, encapsulating the section within start() and end() methods.

Also, be sure to make the cache identifier, which gets passed to save() and start(),

unique; otherwise, unrelated cache records may wipe each other out or even be displayed in

place of the other.

Multiple-Word Frontends and Backends:

Frontends and backends that are named using multiple words, such as 'ZendPlatform' should

be separated by using a word separator, such as a space (' '), hyphen ('-'), or period ('.').

<?php
require_once 'Zend/Cache.php';

$frontendOptions = array(
 'lifetime' => 7200, // cache lifetime of 2 hours
 'automatic_serialization' => true
);

$backendOptions = array(
 'cache_dir' => './tmp/' // Directory to put the cache files
);

// getting a Zend_Cache_Core object
$cache = Zend_Cache::factory('Core', 'File', $frontendOptions,
 $backendOptions);

ZEND_CACHE

Theory Behind Caching

There are three key concepts behind caching: 1) using a unique identifier for manipulating

records; 2) issuing a lifetime directive that defines the ‘age’ of the resource; 3) employ

conditional execution, which means the cached resources can be selectively utilized,

boosting performance.

Factory Method

Always use Zend_Cache::factory() to get frontend instances. Instantiating frontends

and backends yourself will not work as expected, as illustrated in this code:

Cleaning the Cache

Use the remove() method to remove or invalidate a particular cache ID. To remove multiple

IDs, use the clean() method. Example: Remove all Cache Records

<?php
// Load the Zend_Cache factory
require 'Zend/Cache.php';

// Select the backend (for example 'File' or 'Sqlite'...)
$backendName = '[...]';

// Select the frontend (for example 'Core', 'Output', 'Page'...)
$frontendName = '[...]';

// Set an array of options for the chosen frontend
$frontendOptions = array([...]);

// Set an array of options for the chosen backend
$backendOptions = array([...]);

// Create the instance, with two optional arguments (last two)
$cache = Zend_Cache::factory($frontendName, $backendName,
 $frontendOptions, $backendOptions);

<?php

// clean all records

$cache->clean(Zend_Cache::CLEANING_MODE_ALL);

// clean only outdated records

$cache->clean(Zend_Cache::CLEANING_MODE_OLD);

ZEND_CACHE

Frontends

Zend_Cache_Core

Zend_Cache_Core is the primary frontend, the core of the module. It is generic and

extended by other classes. All frontends inherit from Zend_Cache_Core so its methods

and options are also available in other frontends.

Available Frontend Options (for detailed information, see the Programmers Guide)

 caching write_control

 cache_id_prefix automatic_serialization

 lifetime automatic_cleaning_factor

 logging ignore_user_abort

Zend_Cache_Frontend_

Zend_Cache_Frontend_Output is a frontend that utilizes output buffering in PHP to

capture all output between its start() and end() methods.

Zend_Cache_Frontend_Function catches the results of function calls, and has a single

main method, call(), which takes a function name and parameters for the call in an array.

Using the call() function is the same as using call_user_func_array() in PHP. This

component caches both the return value of the function and its internal output.

Available Function Frontend Options (for detailed information, see the Programmers Guide)

 cache_by_defaulting logging

 cached_functions non-cached_functions

Zend_Cache_Frontend_Class differs from Zend_Cache_Frontend_Function in

that it allows caching of object and static method calls.

Zend_Cache_Frontend_File is a frontend driven by the modification time of a ‘master

file’ and is typically used to help solve configuration and template issues.

Zend_Cache_Frontend_Page is similar to Zend_Cache_Frontend_Output but is

designed for a whole page, and cannot be used for only a single block.

ZEND_CACHE

BACKENDS

Zend_Cache_Backend_File

Zend_Cache_Backend_File stores cached records into files in a chosen directory.

 Available Backend Options (for detailed information, see the Reference Guide)

 cache_dir cache_file_umask

 file_locking hashed_directory_level

 read_control hashed_directory_umask

 read_control_type metadatas_array_max_size

 file_name_prefix

Zend_Cache_Backend_Sqlite

Zend_Cache_Backend_Sqlite stores cache records into a SQLite database.

 cache_db_complete_path
 required

 automatic_vacuum_factor

 Zend_Cache_Backend_Memcached

Zend_Cache_Backend_Memcached stores cached records into a ‘memcached’ server,

where memcached is a high-performance, distributed memory object caching system. Using

this backend requires a memcached daemon and the memcache PECL extension.

 servers compression

Zend_Cache_Backend_Apc

Zend_Cache_Backend_Apc stores cached records in shared memory through the

Alternative PHP Cache (APC) extension (required).

Zend_Cache_Backend_ZendPlatform

Zend_Cache_Backend_ZendPlatform uses the Platform content caching API.

ZEND_MEMORY

 Zend_Memory is used to manage data within a memory-limited environment. The Factory

instantiates the memory manager object, which regulates memory through the use of cache

and the swapping and loading of memory objects as required. Note: the memory manager

uses the Zend_Cache backends for storage.

<?php

require_once 'Zend/Memory.php';

$backendOptions = array(

 'cache_dir' => './tmp/' // Directory where to put the swapped

 memory blocks

);

$memoryManager = Zend_Memory::factory('File', $backendOptions);

$loadedFiles = array();

for ($count = 0; $count < 10000; $count++) {

 $f = fopen($fileNames[$count], 'rb');

 $data = fread($f, filesize($fileNames[$count]));

 $fclose($f);

 $loadedFiles[] = $memoryManager->create($data);

}

echo $loadedFiles[$index1]->value;

$loadedFiles[$index2]->value = $newValue;

$loadedFiles[$index3]->value[$charIndex] = '_';

ZEND_MEMORY

Theory Behind Zend Memory

There are four key concepts behind Zend_Memory: 1) Memory Manager, which generates

memory objects upon request of the application, and returns the objects wrapped into a

memory container object; 2) Memory Container, which contains either a virtual or actual

value attribute, a string that contains the data value specified when the memory object is

created; 3) Locked Memory , which contains data that becomes effectively ‘locked’ and is

never swapped to the cache backend; 4) Movable Memory, basically the opposite of Locked

Memory, containing movable objects that are transparently swapped and loaded, to and

from, the backend as needed.

Memory Manager and Factory

Use the Zend_Memory::factory($backendName [, $backendOptions]) method

to create a new Memory Manager. As mentioned previously, the Memory Manager uses the

Zend_Cache backends for storage. To prevent the Manager from swapping memory blocks,

it is possible to use a special backend, ’none’. This is used whenever memory is not limited

or the overall size of the objects does not exceed the memory limit.

Create Movable Objects

Use the Zend_Memory_Manager::create([$data]) method

Create Locked Objects

Use the Zend_Memory_Manager::createLocked([$data]) method

<?php
$backendOptions = array(
 'cache_dir' => './tmp/' // Directory where to put the swapped
 memory blocks
);

$memoryManager = Zend_Memory::factory('File', $backendOptions);

<?php
$memObject = $memoryManager->create($data);

<?php
$memObject = $memoryManager->createLocked($data);

ZEND_MEMORY

Destroy Objects

Memory objects are automatically destroyed and removed from memory when they go out of

scope.

Set Memory Limit

Use the getMemoryLimit() and setMemoryLimit($newLimit) methods to

retrieve or set the memory limit setting. A negative value equates to ‘no limit’.

Memory Container

Use the memory container (movable or locked) 'value' property to operate with memory

object data. An alternative way to access memory object data is to use the getRef()

method. This method must be used for PHP versions before 5.2, and may have to be used in

some other cases for performance reasons.

<?php
$oldLimit = $memoryManager->getMemoryLimit();
// Get memory limit in bytes

$memoryManager->setMemoryLimit($newLimit);
// Set memory limit in bytes

PERFORMANCE

Loading Files and Classes Dynamically

The Zend_Loader class includes methods to help you load files dynamically. It is best used

when the file name to be loaded is variable (for example, based on user input). With fixed file

or class names, there will be no advantage to using Zend_Loader over require_once().

Configuration

Generally, developers will use one of the Zend_Config adapter classes, such as

Zend_Config_Ini or Zend_Config_Xml, to execute the process, but it is important to

note that configuration data available in a PHP array may simply be passed to the

Zend_Config constructor in order to utilize a simple object-oriented interface.

Zend_Config_Ini and Zend_Config_Xml are much slower than loading an array directly.

Opcode Caching

Opcode caching is an important boost to performance for applications written in an

interpretive language like PHP. Instead of having to generate pages each time they are

requested, the opcode caching mechanism preserves the generated code in cache so that it

need only be generated a single time to service any number subsequent requests. This is not

technically a part of ZF, but it is a best practice for production.

Profiling and Zend_Db_Profiler

Within ZF, database profiling is the only effective way to find the actual performance

problems within an application. Zend_Db_Profiler allows for the profiling of queries,

including information on which queries were processed by the adapter as well as elapsed time

to run the queries, helping greatly in identifying bottlenecks.

TEST YOUR KNOWLEDGE : QUESTIONS

Which ONE of the following will create a memory manager
object?

a. $memoryManager = new Zend_Memory('None');

b. $memoryManager = new Zend_Memory_Backend_None();

c. $memoryManager = Zend_Memory::factory('None');

d. $memoryManager = Zend_Memory::getInstance('None');

If $cache is an instance of Zend_Cache_Frontend_Function,

which ONE of the following will cache this function call:

<php>

$result = multiply(5, 10);

</php>

a. $result = $cache->call('multiply', array(5, 10));

b. $result = $cache->call('multiply', 5, 10);

c. $result = $cache->multiply(array(5, 10));

d. $result = $cache->multiply(5, 10);

S A M P L E E X A M

Q U E S T I O N S

If $cache is an instance of Zend_Cache_Frontend_Function,

which ONE of the following will cache this function call:

<php>

$result = multiply(5, 10);

</php>

a. $result = $cache->call('multiply', array(5, 10));

b. $result = $cache->call('multiply', 5, 10);

c. $result = $cache->multiply(array(5, 10));

d. $result = $cache->multiply(5, 10);

TEST YOUR KNOWLEDGE : ANSWERS = CORRECT

Which ONE of the following will create a memory manager
object?

a. $memoryManager = new Zend_Memory('None');

b. $memoryManager = new Zend_Memory_Backend_None();

c. $memoryManager = Zend_Memory::factory('None');

d. $memoryManager = Zend_Memory::getInstance('None');

Zend_Search_Lucene

Use / Purpose Compatibility Storage Backend

Search - Indexing

Atomic Items Analyzers Documents

Search - Querying

Language Concepts Construct Methods Iteration

Fetch Hit Properties Pagination

Search - Performance

Index Optimization Batch Indexing Field Selectivity

CERTIFICATION TOPIC : SEARCH

S E A R C H

S N A P S H O T

Zend Framework: Search

For the exam, here’s what you should know already …

You should understand the purpose of a full-text search system within a web application, and

the benefits that Zend_Search_Lucene, as the search component of ZF, provides. You should

know the basics of using Zend_Search_Lucene, including compatibility and mode of

operation.

You should be familiar with all basic aspects of indexing, parsing, documents and fields,

including index optimization.

You should know query language concepts, object constructing methods, and how to work

with results sets.

S E A R C H

F O C U S

 ZEND_SEARCH_LUCENE

Zend_Search_Lucene is a general purpose text search engine written entirely in PHP 5.

Since it stores its index on the filesystem and does not require a database server, it can add

search capabilities to almost any PHP-driven website. Zend_Search_Lucene supports the

following features:

 Ranked searching - best results returned first

 Many powerful query types: phrase queries, wildcard queries, proximity queries,

range queries and more

 Search by specific field (e.g., title, author, contents)

Zend_Search_Lucene was derived from the Apache Lucene project. For more information

on Lucene, visit http://lucene.apache.org/java/docs/

File Formats

Zend_Search_Lucene index file formats are binary compatible with Java Lucene version

1.4 and greater.

Document and Field Objects

Zend_Search_Lucene operates with documents as atomic objects for indexing. A

document is divided into named fields with searchable content and is represented by the

Zend_Search_Lucene_Document class. Objects of this class contain instances of

Zend_Search_Lucene_Field that represent the fields on the document.

It is important to note that any information can be added to the index. Application-specific

information or metadata can be stored in the document fields, and later retrieved with the

document during search. Each application must be set up to control the indexer, which means

that data can be indexed from any source accessible to your application – a filesystem,

database, HTML form, etc.

ZEND_SEARCH_LUCENE

Document and Field Objects (continued)

Zend_Search_Lucene_Field class provides several static methods to create fields with

different characteristics:

<?php

$doc = new Zend_Search_Lucene_Document();

// Field not tokenized, but is indexed and stored within index.

// Stored fields can be retrieved from the index.

$doc->addField(Zend_Search_Lucene_Field::Keyword('doctype',

 'autogenerated'));

// Field not tokenized nor indexed, but is stored in the index.

$doc->addField(Zend_Search_Lucene_Field::UnIndexed('created',

 time()));

// Binary string value field not tokenized nor indexed,

// but is stored in the index.

$doc->addField(Zend_Search_Lucene_Field::Binary('icon',

 $iconData));

// Field is tokenized and indexed, and is stored in the index.

$doc->addField(Zend_Search_Lucene_Field::Text('annotate',

 'Doc annotate text'));

// Field is tokenized and indexed, but is not stored in the index.

$doc->addField(Zend_Search_Lucene_Field::UnStored('contents',

 'Doc content'));

ZEND_SEARCH_LUCENE

Charset

Zend_Search_Lucene works with the UTF-8 charset internally. Index files store unicode

data in Java's "modified UTF-8 encoding". Zend_Search_Lucene core completely

supports this encoding except for "supplementary characters" - Unicode characters with

codes greater than 0xFFFF.

Actual input data encoding may be specified through the Zend_Search_Lucene API. In

general, the data is automatically converted into UTF-8 encoding. However, some text

transformations are made by text analyzers and the default text analyzer does not work with

UTF-8 because of requirements for certain extensions to be loaded. In these cases, the date is

translated into ASCII/TRANSLIT and then tokenized. Special UTF-8 analyzers, described later in

the “Analyzer” section, may be used.

Storage

The abstract class Zend_Search_Lucene_Storage_Directory defines directory

functionality.

The Zend_Search_Lucene constructor uses either a string or a

Zend_Search_Lucene_Storage_Directory object as input.

The Zend_Search_Lucene_Storage_Directory_Filesystem class implements

directory functionality for a file system. If a string is used as an input for the

Zend_Search_Lucene constructor, then the index reader (Zend_Search_Lucene

object) treats it as a file system path and instantiates the

Zend_Search_Lucene_Storage_Directory_Filesystem object.

Directory implementations can be custom-defined by extending the

Zend_Search_Lucene_Storage_Directory class.

ZEND_SEARCH_LUCENE

Building and Updating an Index

Index creation and updating capabilities are implemented within the Zend_Search_Lucene

component, as well as the Java Lucene project – either can be used to create indexes that

Zend_Search_Lucene can search. The same procedure is used to update an existing

index. The only difference is that the open() method is called instead of the create()

method. Ex: Indexing a file using the Zend_Search_Lucene indexing API

<?php

// Create index

$index = Zend_Search_Lucene::create('/data/my-index');

$doc = new Zend_Search_Lucene_Document();

// Store document URL to identify it in the search results

$doc->addField(Zend_Search_Lucene_Field::Text('url', $docUrl));

// Index document contents

$doc->addField(

 Zend_Search_Lucene_Field::UnStored(

 'contents',

 $docContent

)

);

// Add document to the index

$index->addDocument($doc);

ZEND_SEARCH_LUCENE

Updating Documents

The Lucene index file format doesn't support updating documents. Documents
should be removed and re-added to the index to effectively update them.
Zend_Search_Lucene::delete()method operates with an internal index
document id. It can be retrieved from a query hit by 'id' property:

Index Optimization

A Lucene index consists of many segments - each segment is a completely independent set of

data, which cannot be updated. A segment update needs full segment reorganization, and

new documents are added to the index by creating new segments.

Increasing the number of segments reduces index quality, but index optimization
restores it. Optimization essentially merges several segments into a new one. The
process generates one new large segment and updates the segment list ('segments'
file), but not the segments themselves.

A call to Zend_Search_Lucene::optimize()invokes full index optimization,

merging all index segments into one new segment:

Automatic index optimization is performed to keep indexes in a consistent state. It is an

iterative process managed by several index options, which merges very small segments into

larger ones, then merges these larger segments into even larger segments and so on.

<?php
// Open existing index
$index = Zend_Search_Lucene::open('/data/my-index');

// Optimize index
$index->optimize();

<?php

$removePath = ...;

$docs = $index->find('path:' . $removePath);

foreach ($docs as $doc) {

 $index->delete($doc->id);

}

ZEND_SEARCH_LUCENE

Searching Indices – Building Queries

There are two ways to search an index - the first method uses a query parser to construct a

query from a string. The second is to programmatically create your own queries through the

Zend_Search_Lucene API. Generally speaking, the query parser is designed for human-

entered text, not for program-generated text (better suited to the API method). Untokenized

fields are best added directly to queries and not through the query parser. If a field's values are

generated programmatically by the application, then the query clauses for this field should

also be constructed programmatically.

Analyzer

An analyzer, which is used by the query parser, is designed to convert human-entered text to

terms. Program-generated values, like dates, keywords, etc., should be added with the query

API.

In a query form, fields that are general text should use the query parser. All others, such as

date ranges, keywords, etc., are better added directly through the query API. A field with a

limited set of values that can be specified with a pull-down menu should not be added to a

query string subsequently parsed; instead, it should be added as a TermQuery clause.

Boolean queries allow the programmer to logically combine two or more queries into
new one, the best way to add additional criteria to a search defined by a query string.

Both ways use the same API method to search through the index:

Zend_Search_Lucene::find() determines input type automatically and uses the
query parser to construct an appropriate Zend_Search_Lucene_Search_Query
object from an input of type string.

Note: the query parser uses the standard analyzer to tokenize separate parts of a query
string; all transformations applied to indexed text are also applied to query strings.

The standard analyzer may transform the query string to lower case for case-
insensitivity, remove stop-words, and stem among other modifications. The API
method doesn't transform or filter input terms in any way, making it more suitable for
computer generated or untokenized fields.

<?php
require_once 'Zend/Search/Lucene.php';

$index = Zend_Search_Lucene::open('/data/my_index');

$index->find($query);

ZEND_SEARCH_LUCENE

Analyzer (continued)

Zend_Search_Lucene contains a set of UTF-8 compatible analyzers:
Zend_Search_Lucene_Analysis_Analyzer_Common_ +

Utf8 or Utf8Num or Utf8_CaseInsensitive or Utf8Num_CaseInsensitive

Search Results

The search result is an array of Zend_Search_Lucene_Search_QueryHit objects.
Each of these has two properties: $hit->document is a document number within
the index and $hit->score is a score of the hit in a search result. The results are
ordered by score (descending from highest score).

The Zend_Search_Lucene_Search_QueryHit object also exposes each field of
the Zend_Search_Lucene_Document found in the search as a property of the hit.
Stored fields are always returned in UTF-8 encoding. Optionally, the original
Zend_Search_Lucene_Document object can be returned from the
Zend_Search_Lucene_Search_QueryHit. You can retrieve stored parts of the
document by using the getDocument() method of the index object and then get
them using getFieldValue(). Ex:

<?php

require_once 'Zend/Search/Lucene.php';

$index = Zend_Search_Lucene::open('/data/my_index');

$hits = $index->find($query);

foreach ($hits as $hit) {

// return Zend_Search_Lucene_Document object for this hit

 echo $document = $hit->getDocument();

// return Zend_Search_Lucene_Field object

// from Zend_Search_Lucene_Document

 echo $document->getField('title');

// return the string value of Zend_Search_Lucene_Field object

 echo $document->getFieldValue('title');

// same as getFieldValue()

 echo $document->title;

}

ZEND_SEARCH_LUCENE

Search Results (continued)

The fields available from the Zend_Search_Lucene_Document object are determined at

the time of indexing. The document fields are either indexed, or index and stored, in the

document by the indexing application (Example: LuceneIndexCreation.jar). Note

that the document identity ('path' in our example) is also stored in the index and must be

retrieved from it.

Short Document Field Access

Short syntax automatically retrieves a document from an index (although it needs additional

time and increases memory usage). Short index is not suitable for 'id' and 'score'

document fields (if they are present) because of special 'id' and 'score' hit properties

name conflicts.

Short syntax is very important for pagination implementation. Whole result set ids and scores

should be stored somewhere (for example, using Zend_Cache) without actual document

retrieval (only 'id' and 'score' properties are accessed). Then, any required parts of ids or

scores should be used to get documents using the $index->getDocument($id) method.

$hit->title
// identical to $hit->getDocument()->title and also
// identical to $hit->getDocument()->getFieldValue('title')

ZEND_SEARCH_LUCENE

Limit Result Set

Zend_Search_Lucene makes it possible to limit result set size using getResultSetLimit()
and setResultSetLimit(). The component limits the result set by the “first N” results,
before ordering these results by score.

As the score computation uses up essential search time, a reduction in the number of results
scored represents a corresponding increase in Search performance.

Results Scoring

Zend_Search_Lucene uses the same scoring algorithms as Java Lucene. All hits in the

search result are ordered by score by default. Hits with greater score come first, and

documents having higher scores should match the query more precisely than documents

having lower scores. A hit's score can be retrieved by accessing the score property of the hit:

Results Sorting

By default, the search results are ordered by score. This default can be overridden by setting a

sort field (or a list of fields), sort type and sort order parameters.

<?php
$currentResultSetLimit = Zend_Search_Lucene::getResultSetLimit();

Zend_Search_Lucene::setResultSetLimit($newLimit);

<?php
$hits = $index->find($query);

foreach ($hits as $hit) {
 echo $hit->id;
 echo $hit->score;
}

TEST YOUR KNOWLEDGE : QUESTIONS

How to get full list of indexed fields from the index?

a. $index->getFields(true);

b. $index->getFields(false);

c. $index->getFields(Zend_Search_Lucene_Field::INDEXED);

d. $index->getFields();

Which method should be used to retrieve total number of

documents stored in the index (including deleted documents)?

a. $index->countDocuments();

b. $index->numDoc();

c. $index->docCount();

d. $index->count();

S A M P L E E X A M

Q U E S T I O N S

TEST YOUR KNOWLEDGE : ANSWERS
= CORRECT

How to get full list of indexed fields from the index?

a. $index->getFields(true);

b. $index->getFields(false);

c. $index->getFields(Zend_Search_Lucene_Field::INDEXED);

d. $index->getFields();

Which method should be used to retrieve total number of

documents stored in the index (including deleted documents)?

a. $index->countDocuments();

b. $index->numDoc();

c. $index->docCount();

d. $index->count();

Cross-Site Scripting Attack

Zend_Filter ZF Protections

Zend_Db ZF Protections

SQL Injection Attack

Zend_View ZF Protections

Output Escaping

Zend_Form ZF Protections

Cross-Site Request Forgery

CERTIFICATION TOPIC : SECURITY

S E C U R I T Y

S N A P S H O T

 ZF Protections

Secure Authentication

Zend_Auth

ZF Protections

Security Best Practices

Zend Framework: Security

For the exam, here’s what you should know already …

You will need to know the basics around security – the most common types of security attacks

and breaches, and the most common measures to employ to help prevent or mitigate such

attacks.

There are six sub-topic areas on which you will be tested:

 Output Escaping

 Cross-Site Scripting Attacks

 SQL Injection Attacks

 Cross-Site Request Forgery Attacks

 Secure Authentication

 Security Best Practices

S E C U R I T Y

F O C U S

OUTPUT ESCAPING

A critical function for view scripts to perform is to escape output properly, as it helps to fend

off security attacks like cross-site scripting.

A best practice rule is always to escape variables when outputting them, unless you are using

a function or method or helper that performs this step on its own.

 Zend_View uses the escape() method to performs output escaping

 By default, it uses the PHP function htmlspecialchars() for this process

 To escape using an alternate way, call the setEscape() method at the Controller

level to instruct Zend_View on what escaping callback to use

<?php

// Bad View Script Practice:
echo $this->variable;

// Good View Script Practice:
echo $this->escape($this->variable);

<?php
// create a Zend_View instance
$view = new Zend_View();

// tell it to use htmlentities as the escaping callback
$view->setEscape('htmlentities');

// or tell it to use a static class method as the callback
$view->setEscape(array('SomeClass', 'methodName'));

// or even an instance method
$obj = new SomeClass();
$view->setEscape(array($obj, 'methodName'));

// and then render your view
echo $view->render(...);

CROSS-SITE SCRIPTING ATTACKS

Cross-site scripting attacks are an injection of HTML, CSS, or script code into a page. JavaScript

is especially a threat; its primary cause is displaying data mis-interpreted by the browser.

Filters are commonly used to escape HTML elements, helping to avoid such attacks. If, for

example, a form field is populated with untrustworthy data (and any data input from the

outside is untrustworthy!), then this value should either not contain HTML (removal), or if it

does, then have that HTML escaped.

 Calling the filter() method on any Zend_Filter_* object performs

transformations upon input data (Example for HTML & and “ given below)

<?php
require_once 'Zend/Filter/HtmlEntities.php';

$htmlEntities = new Zend_Filter_HtmlEntities();

echo $htmlEntities->filter('&'); // &
echo $htmlEntities->filter('"'); // "

SQL INJECTION ATTACKS

SQL injection attacks are those in which applications are manipulated to return data to a user

that should not have the privilege to access/read such data.

This access is commonly accomplished by an attacker randomly attempting to exploit a flaw,

known or not, in the code involving SQL queries which use PHP variables (requiring quotes).

The developer must take into account that these variables may contain symbols that will

result in incorrect SQL code – for example, the use of a quote in a person’s name. The attack is

accomplished by the attacker detecting such flaws, and manipulating them by, for example,

specifying a value for a PHP variable through the use of an HTTP parameter or other similar

mechanism.

 Where is the error and consequent security flaw in this code?

Zend_Db has some built-in features that help to mitigate such attacks, although there is no

substitute for good programming.

When inserting data from an array, the values are inserted as parameters by default, reducing

the risk of some types of security issues. Consequently, you do not need to apply escaping or

quoting to values in a data array.

$name = $_GET[‘Name’];
//$_GET[‘Name’] = "O'Reilly";
$sql = "SELECT * FROM bugs WHERE reported_by = '$name'";

echo $sql;
// SELECT * FROM bugs WHERE reported_by = 'O'Reilly'

CROSS-SITE REQUEST FORGERY ATTACKS

Cross-Site Request Forgery (XSRF) attacks employ an almost opposite approach to Cross-Site

Scripting (XSS). XSRF attacks disguise themselves as a trusted user to attack a web site,

whereas XSS attacks disguise themselves as a trusted web site to attack a user.

To protect against XSRF attacks originating from third party sites, you have options …

First, prior to doing any kind of "dangerous" activity, such as changing

a password or buying a car, require the user to re-authenticate themselves so there is a

forced user interaction with the website (Ex: using Zend_Auth). By disallowing

automated page and form submissions, the window that an attacker has to initiate the

attack is severely limited.

Another option available is the use of hashed identifiers in submitted forms (typically

the most dangerous activity, like changing a password) can reduce the damage of a

XSRF attack. Once a unique hash has been used to service a request, it is subsequently

invalidated, and any request using that ID is not honored.

Zend_Form_Element_Hash, used in conjunction with Zend_Form::isValid()

helps to automate the hashing/validation mechanism.

Filters (such as Zend_Filter) are commonly used to escape HTML elements. If, for

example, a form field is populated with untrustworthy data (and any data input from

the outside is untrustworthy!), then this value should either not contain HTML

(removal), or if it does, then have that HTML escaped.

(Note: there may be times when HTML output needs to be displayed – for example,

when using a JavaScript-based HTML editor; in these cases, you would need to build

either a validator or filter that employs a whitelist approach.

SECURE AUTHENTICATION

Authentication is the process of verifying a user’s identity against some set of pre-established

criteria.

Zend_Auth provides an API for conducting authentication, along with adapters designed

for the most common uses.

Here are some things to keep in mind (see the Authorization section for more detail):

 Zend_Auth implements the Singleton pattern through its static getInstance()

method.

o Singleton pattern means only one instance of the class is available at any one time

o The new operator and the clone keyword will not work with this class… use

Zend_Auth::getInstance() instead

o Use of Zend_Auth is not a substitute for proper encryption of communications

 The adapters authenticate against a particular service, like LDAP, RDBMS, etc.; while their

behavior and options will vary, they share some common actions:

o accept authenticating credentials

o perform queries against the service

o return results

SECURITY BEST PRACTICES

There are three golden rules to follow when providing security to web applications and their

environments:

1. Always validate your input

2. Always filter your output

3. Never trust your users

The Zend Framework features (Zend_Filter and Zend_Filter_Input, Zend_Validate,

Zend_Auth, etc.) that map to these rules have been covered individually in context with the

types of attacks. Additional information can be found within other sections of this guide,

such as Filtering and Validation, Authorization and Authentication.

TEST YOUR KNOWLEDGE : QUESTIONS

Zend_Auth will, regardless of the adapter used to process
identities and credentials, will encrypt the information
sent from the browser to the application using it.

a. TRUE

b. FALSE

S A M P L E E X A M

Q U E S T I O N S

When using Zend_View with unescaped data, which of the
following view script calls would escape your data, $data:

a. $this->filter($data)

b. $this->escape($data)

c. $this->htmlEntities($data)

d. $data->escape()

TEST YOUR KNOWLEDGE : ANSWERS

When using Zend_View with unescaped data, which of the
following view script calls would escape your data, $data:

a. $this->filter($data)

b. $this->escape($data)

c. $this->htmlEntities($data)

d. $data->escape()

= CORRECT

Zend_Auth will, regardless of the adapter used to process
identities and credentials, will encrypt the information
sent from the browser to the application using it.

a. TRUE

b. FALSE

XmlRpc_Client

Instantiate Server Proxy Fault Responses

Handle Caching

Class Methods Functions Request/Response

XmlRpc_Server

Rest_Client

Initialize Call Retrieve

CERTIFICATION TOPIC : WEB SERVICES

W E B S E R V I C E S

S N A P S H O T

Call

Fault Exceptions

Rest_Server

Class Methods Functions Request/Response

Concrete Service Consumables

Services HTTP Clients

Handle

 Zend Framework: Web Services

For the exam, here’s what you should know already …

You should be able to explain the function of the XmlRpc Clients and Servers, and provide

code for related functions, methods, and classes.

You should know how to specify exceptions that may be used as fault responses.

You should be able to work with REST clients and services.

You should know the purpose of consumable services, and which are available to Zend

Framework.

W E B S E R V I C E S

F O C U S

 ZEND_XMLRPC_CLIENT

Zend_XmlRpc_Client provides support for consuming remote XML-RPC services as a client

in its package. Its major features include automatic type conversion between PHP and XML-

RPC, a server proxy object, and access to server introspection capabilities.

Method Calls

The constructor of Zend_XmlRpc_Client receives the URL of the remote XML-RPC server

endpoint as its first parameter. The new instance returned can call any number of remote

methods at that endpoint, by instantiating it and then using the call() instance method.

The XML-RPC value returned from the remote method call will be automatically unmarshaled

and cast to the equivalent PHP native type. In the example above, a PHP string is returned

and immediately ready for use. The first parameter of the call() method receives the name

of the remote method to call. Any required parameters can be sent by supplying a second,

optional parameter to call() with an array of values to pass to the remote method.

If no parameters are required, this option may either be left out or an empty array() passed

to it. Parameters can contain native PHP types, Zend_XmlRpc_Value objects, or a mix. The

call() method will automatically convert the XML-RPC response and return its PHP native

type. getLastResponse() makes a Zend_XmlRpc_Response object available for the

return value.

Request to Response

The call() instance method of Zend_XmlRpc_Client builds a request object

(Zend_XmlRpc_Request) and sends it to another method, doRequest(). This returns a

response object (Zend_XmlRpc_Response). doRequest()can also be directly used.

<?php

require_once 'Zend/XmlRpc/Client.php';

$client = new Zend_XmlRpc_Client('http://www.zend.com/xmlrpc');

echo $client->call('test.sayHello'); // hello

<?php

require_once 'Zend/XmlRpc/Client.php';

$client = new Zend_XmlRpc_Client('http://www.zend.com/xmlrpc');

$arg1 = 1.1;

$arg2 = 'foo';

$result = $client->call('test.sayHello', array($arg1, $arg2));

// $result is a native PHP type

ZEND_XMLRPC_CLIENT

Server Proxy Object:

Another way to call remote methods with the XML-RPC client is to use the server proxy, a PHP

object that proxies a remote XML-RPC namespace, making it work as close to a native PHP

object as possible. To instantiate a server proxy, call the getProxy() instance method of

Zend_XmlRpc_Client, which returns an instance of

Zend_XmlRpc_Client_ServerProxy. Any method call on the server proxy object will be

forwarded to the remote, and parameters may be passed like any other PHP method.

The getProxy() method receives an optional argument specifying which namespace of the

remote server to proxy. If it does not receive a namespace, the default namespace will be

proxied.

Error Handling – HTTP Errors:

If an HTTP error occurs, such as the remote HTTP server returns a “404 Not Found”, a

Zend_XmlRpc_Client_HttpException will be thrown. Ex:

<?php
require_once 'Zend/XmlRpc/Client.php';

$client = new Zend_XmlRpc_Client('http://www.zend.com/xmlrpc');

// Proxy the default namespace
$server = $client->getProxy();

//test.Hello(1,2)returns "hello"
$hello = $server->test->sayHello(1, 2);

<?php
require_once 'Zend/XmlRpc/Client.php';

$client = new Zend_XmlRpc_Client('http://foo/404');

try {
 $client->call('bar', array($arg1, $arg2));

} catch (Zend_XmlRpc_Client_HttpException $e) {

 // $e->getCode() returns 404
 // $e->getMessage() returns "Not Found"
}

ZEND_XMLRPC_CLIENT

Error Handling – XML-RPC Faults:

An XML-RPC fault is analogous to a PHP exception. It is a special type returned from an XML-

RPC method call that has both an error code and an error message. XML-RPC faults are

handled differently depending on the context of how the Zend_XmlRpc_Client is used.

When the call() method or the server proxy object is used, an XML-RPC fault will result in a

Zend_XmlRpc_Client_FaultException being thrown. The code and message of the

exception will map directly to their respective values in the original XML-RPC fault response.

If call() is used to make the request, Zend_XmlRpc_Client_FaultException will be
thrown on fault. A Zend_XmlRpc_Response object containing the fault will also be
available by calling getLastResponse().

If doRequest() is used to make the request, it will not throw the exception. Instead, it will
return a Zend_XmlRpc_Response object containing the fault, which can be checked with
the isFault() instance method of Zend_XmlRpc_Response.

When using the ServerProxy, faults are thrown as
Zend_XmlRpc_Client_FaultException -- just as when using call().

<?php

require_once 'Zend/XmlRpc/Client.php';

$client = new Zend_XmlRpc_Client('http://www.zend.com/xmlrpc');

try {

 $client->call('badMethod');

} catch (Zend_XmlRpc_Client_FaultException $e) {

 // $e->getCode() returns 1

 Zend_Db contains a factory() method by which you may

instantiate a database adapter object

ZEND_XMLRPC_SERVER

Basic Usage:

Zend_XmlRpc_Server is intended as a fully-featured XML-RPC server, which implements all

system methods, including the system.multicall() method, allowing for the ‘boxcarring’

of requests. Example of Zend_XmlRpc_Server 's most basic use:

Server Structure:

Zend_XmlRpc_Server is composed of a variety of components: he server itself, as well as

request, response, and fault objects. To bootstrap Zend_XmlRpc_Server, attach one or

more classes or functions to the server, via setClass() and addFunction(). Then, either

pass a Zend_XmlRpc_Request object to Zend_XmlRpc_Server::handle(), or it will

instantiate a Zend_XmlRpc_Request_Http object if none is provided -- thus grabbing the

request from php://input.

Zend_XmlRpc_Server::handle() then attempts to dispatch to the appropriate handler

based on the method requested, and returns either a Zend_XmlRpc_Response-based

object or a Zend_XmlRpc_Server_Fault object. These objects both have

__toString() methods that create valid XML-RPC XML responses, allowing them to be

directly echoed.

<?php
require_once 'Zend/XmlRpc/Server.php';
require_once 'My/Service/Class.php';

$server = new Zend_XmlRpc_Server();
$server->setClass('My_Service_Class');
echo $server->handle();

;

ZEND_XMLRPC_SERVER

When attaching items to a server, functions and class methods must have full docblocks with,

minimally, the parameter and return type annotations. Without this information, the servers

will not work.

Attaching a Function:

This example illustrates the relatively simple process of attaching a function as a dispatchable

XML-RPC method, also handling incoming calls.

 Attaching a Class:

The code example below attaches a class' public methods as dispatchable XML-RPC methods.

Custom Request Objects:

Most of the time, you'll simply use the default request type included with

Zend_XmlRpc_Server, Zend_XmlRpc_Request_Http. However, there may be times

when you need XML-RPC to be available via the CLI, a GUI, or other environment, or want to

log incoming requests. To do so, you may create a custom request object that extends

Zend_XmlRpc_Request. The most important thing to remember is to ensure that the

getMethod() and getParams() methods are implemented so that the XML-RPC server can

retrieve that information in order to dispatch the request.

<?php
require_once 'Zend/XmlRpc/Server.php';

/**
 * Return the MD5 sum of a value
 *
 * @param string $value Value to md5sum
 * @return string MD5 sum of value
 */
function md5Value($value)
{
 return md5($value);
}

$server = new Zend_XmlRpc_Server();
$server->addFunction('md5Value');
echo $server->handle();

<?php
require_once 'Zend/XmlRpc/Server.php';
require_once 'Services/Comb.php';

$server = new Zend_XmlRpc_Server();
$server->setClass('Services_Comb');
echo $server->handle();

ZEND_XMLRPC_SERVER

Custom Responses:

Similar to request objects, Zend_XmlRpc_Server can return custom response objects; by

default, a Zend_XmlRpc_Response_Http object is returned, which sends an appropriate

Content-Type HTTP header for use with XML-RPC.

Possible uses of a custom object would be to log responses, or to send responses back to

STDOUT. Be sure to use Zend_XmlRpc_Server::setResponseClass() prior to calling

handle().

Handling Exceptions:

Zend_XmlRpc_Server catches exceptions generated by a dispatched method, and

generates an XML-RPC fault response when such an exception is caught.

By default, however, the exception messages and codes are not used in a fault response. This

is an intentional decision to protect your code; exceptions expose information about the code

or environment that can create a security risk.

Exception classes can be whitelisted to be used as fault responses. Simply utilize

Zend_XmlRpc_Server_Fault::attachFaultException() to pass an exception class

to whitelist.

If you utilize an exception class that your other project exceptions inherit, a whole family of

exceptions can be whitelisted. Zend_XmlRpc_Server_Exceptions are always whitelisted,

for reporting specific internal errors (undefined methods, etc.).

Any exception not specifically whitelisted will generate a fault response with a code of '404'

and a message of 'Unknown error'.

Caching Server Definitions Between Requests:

Attaching many classes to an XML-RPC server instance can tie up resources; each class must

introspect using the Reflection API (via Zend_Server_Reflection), which in turn

generates a list of all possible method signatures to provide to the server class. To offset this

performance hit, Zend_XmlRpc_Server_Cache can be used to cache the server definition

between requests. When combined with __autoload(), this can greatly increase

performance.

<?php
Zend_XmlRpc_Server_Fault::attachFaultException('My Exception');

ZEND_XMLRPC_SERVER

Caching Server Definitions Between Requests

Attaching many classes to an XML-RPC server instance can tie up resources; each class must

introspect using the Reflection API (via Zend_Server_Reflection), which in turn

generates a list of all possible method signatures to provide to the server class. To offset this

performance hit, Zend_XmlRpc_Server_Cache can be used to cache the server definition

between requests. When combined with __autoload(), this can greatly increase

performance. A sample use case follows:

The above example attempts to retrieve a server definition from xmlrpc.cache in the same

directory as the script. If unsuccessful, it loads the service classes it needs, attaches them to the

server instance, and then attempts to create a new cache file with the server definition.

function __autoload($class)
{
 Zend_Loader::loadClass($class);
}

$cacheFile = dirname(__FILE__) . '/xmlrpc.cache';
$server = new Zend_XmlRpc_Server();

if (!Zend_XmlRpc_Server_Cache::get($cacheFile, $server)) {
 require_once 'My/Services/Glue.php';
 require_once 'My/Services/Paste.php';
 require_once 'My/Services/Tape.php';

// glue. namespace
 $server->setClass('My_Services_Glue', 'glue');
// paste. namespace
 $server->setClass('My_Services_Paste', 'paste');
// tape. namespace
 $server->setClass('My_Services_Tape', 'tape');

 Zend_XmlRpc_Server_Cache::save($cacheFile, $server);
}

echo $server->handle();

ZEND_REST_CLIENT

REST Web Services use service-specific XML formats; consequently, the manner for accessing a

REST web service is different for each service. REST web services typically use URL parameters

(GET data) or path information for requesting data and POST data for sending data.

The Zend Framework provides both Client and Server capabilities that, when used together,

allow for a much more "local" interface experience via virtual object property access. The

Server component automatically exposes functions and classes using a meaningful and

simple XML format. When accessing these services using the Client, the return data can be

easily retrieved from the remote call.

Using the Zend_Rest_Client is very similar to using SoapClient objects . Simply call the

REST service procedures as Zend_Rest_Client methods and specify the service's full

address in the Zend_Rest_Client constructor.

Zend_Rest_Client attempts to make remote methods look as much like native methods

as possible, only that method call must be followed with one of either get(), post(),

put() or delete(). This call may be made via method chaining or in separate method calls.

<?php

/**

 * Connect to framework.zend.com server and retrieve a greeting

 */

require_once 'Zend/Rest/Client.php';

$client = new Zend_Rest_Client('http://framework.zend.com/rest');

echo $client->sayHello('Dave', 'Day')->get(); // "Hello Dave,

Good Day"

<?php
$client->sayHello('Dave', 'Day');
echo $client->get();

ZEND_REST_CLIENT

Responses

All requests made using Zend_Rest_Client return a Zend_Rest_Client_Response

object. This object has many properties that make it easier to access the results. When the

service is based on Zend_Rest_Server, Zend_Rest_Client can make several

assumptions about the response, including response status (success or failure) and return

type.

In the example above, the request result as an object, used to call isSuccess(), and then

using __toString()echoes the object to get the result.

Zend_Rest_Client_Response will allow any scalar value to be echoed. For complex

types, you can use either array or object notation.

If the service is queried not using Zend_Rest_Server, the

Zend_Rest_Client_Response object will behave more like a SimpleXMLElement.

However, to make things easier, it will automatically query the XML using XPath if the

property is not a direct descendant of the document root element. Additionally, if the

property is accessed as a method, the PHP value for the object is returned, or an array of PHP

value results.

<?php
$result = $client->sayHello('Dave', 'Day')->get();

if ($result->isSuccess()) {
 echo $result; // "Hello Dave, Good Day"
}

ZEND_REST_SERVER

Zend_Rest_Server is intended as a fully-featured REST server. When attaching items to a

server, functions and class methods must have full docblocks with, minimally, the parameter

and return type annotations. Without this information, the servers will not work.

Zend_Rest_Server Usage - Classes:

Zend_Rest_Server Usage - Functions:

Calling a Zend_Rest_Server Service:

To call a Zend_Rest_Server service, supply a GET/POST method argument with a value

that is the method you wish to call. You can then follow that up with any number of

arguments using either the name of the argument (i.e. "who") or using arg following by the

numeric position of the argument (i.e. "arg1"). Using the example above, sayHello can be

called in two ways:

<?php
require_once 'Zend/Rest/Server.php';
require_once 'My/Service/Class.php';

$server = new Zend_Rest_Server();
$server->setClass('My_Service_Class');
$server->handle();

<?php
require_once 'Zend/Rest/Server.php';

/**
 * Say Hello
 *
 * @param string $who
 * @param string $when
 * @return string
 */
function sayHello($who, $when)
{
 return "Hello $who, Good $when";
}

$server = new Zend_Rest_Server();
$server->addFunction('sayHello');
$server->handle();

ZEND_REST_SERVER

Returning Custom XML Responses:

To return custom XML, simply return a DOMDocument, DOMElement or

SimpleXMLElement object. The response from the service will be returned without

modification to the client.

<?php

require_once 'Zend/Rest/Server.php';

/**

 * Say Hello

 *

 * @param string $who

 * @param string $when

 * @return SimpleXMLElement

 */

function sayHello($who, $when)

{

 $xml ='<?xml version="1.0" encoding="ISO-8859-1"?>

<mysite>

 <value>Hey $who! Hope you're having a good $when</value>

 <code>200</code>

</mysite>';

 $xml = simplexml_load_string($xml);

 return $xml;

}

$server = new Zend_Rest_Server();

$server->addFunction('sayHello);

$server->handle();

ZEND_SERVICE

Zend_Service_Abstract is an abstract class which serves as a foundation for web service

implementations (also look at Zend_Rest_Client to support generic, XML-based REST

services).

While Zend_Service is extensible, Zend also provides support for popular web services.
Examples of web service support packaged with Zend Framework include:

 Akismet Amazon Audioscrobbler

 Del.icio.us Flickr Simpy

 SlideShare StrikeIron Yahoo!

HTTP Clients:

For those Zend services that utilize HTTP requests, change the HTTP client of

Zend_Rest_Client to change which HTTP client the service uses.

When making more than one request with a service, configure the HTTP client to keep

connections alive and speed the requests.

<?php

$myHttpClient = new My_Http_Client();

Zend_Service_Akismet::setHttpClient($myHttpClient);

<?php
Zend_Service_Akismet::getHttpClient()->setConfig(array(
 'keepalive' => true
));

TEST YOUR KNOWLEDGE : QUESTIONS

Zend_Rest_Client expects a REST service that returns what
type of content?

a. Plain text

b. JSON

c. HTML

d. XML

XML-RPC fault responses are reported by Zend_XmlRpc_Client
by:

a. Raising an exception

b. Triggering an error

c. Using the client's isFault() method

d. Checking for a fault Message in the response

S A M P L E E X A M

Q U E S T I O N S

TEST YOUR KNOWLEDGE : ANSWERS = CORRECT

Zend_Rest_Client expects a REST service that returns what
type of content?

a. Plain text

b. JSON

c. HTML

d. XML

XML-RPC fault responses are reported by Zend_XmlRpc_Client
by:

a. Raising an exception

b. Triggering an error

c. Using the client's isFault() method

d. Checking for a fault Message in the response

	Introduction
	Authentication & Authorization
	Coding Standards
	Databases
	Diagnosis & Maintenance
	Filtering & Validation
	Forms
	Infrastructure
	Internationalization
	Mail
	MVC
	Performance
	Search
	Security
	Web Services

